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To the originators and developers of the codes.
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To produce a mighty book, you must choose a mighty theme.
—Herman Melville



Preface

The dates of most of the important historical events are known, but not always very
precisely. We know that Kublai Khan, grandson of Ghengis Khan, founded the Yuan
dynasty in 1280 (it lasted until 1368), but we don’t know precisely (i.e., the month,
day and hour) when this act took place. A notable exception to this state of affairs is
the modern age of telecommunications, a historical era whose birth is known precisely,
up to the minute. On Friday, 24 May 1844, at precisely 9:45 in the morning, Samuel
Morse inaugurated the age of modern telecommunications by sending the first telegraphic
message in his new code. The message was sent over an experimental line funded by
the American Congress from the Supreme Court chamber in Washington, DC to the B
& O railroad depot in Baltimore, Maryland. Taken from the Bible (Numbers 23:23),
the message was “What hath God wrought?” It had been suggested to Morse by Annie
Ellsworth, the young daughter of a friend. It was prerecorded on a paper tape, was sent
to a colleague in Baltimore, and was then decoded and sent back by him to Washington.
An image of the paper tape can be viewed at [morse-tape 06].

Morse was born near Boston and was educated at Yale.
We would expect the inventor of the telegraph (and of such a
sophisticated code) to have been a child prodigy who tinkered
with electricity and gadgets from an early age (the electric
battery was invented when Morse was nine years old). In-
stead, Morse became a successful portrait painter with more
than 300 paintings to his credit. It wasn’t until 1837 that
the 46-year-old Morse suddenly quit his painting career and
started thinking about communications and tinkering with
electric equipment. It is not clear why he made such a drastic
career change at such an age, but it is known that two large,
wall-size paintings that he made for the Capitol building in |
Washington, DC were ignored by museum visitors and rejected by congressmen. It may
have been this disappointment that gave us the telegraph and the Morse code.

Given this background, it is easy to imagine how the 53-year-old Samuel Morse
felt on that fateful day, Friday, 24 May 1844, as he sat hunched over his mysterious
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apparatus, surrounded by a curious crowd of onlookers, some of whom had only a vague
idea of what he was trying to demonstrate. He must have been very anxious, because
his telegraph project, his career, and his entire future depended on the success of this
one test. The year before, the American Congress awarded him $30,000 to prepare this
historical test and prove the value of the electric telegraph (and thus also confirm the
ingenuity of yankees), and here he is now, dependent on the vagaries of his batteries, on
the new, untested 41-mile-long telegraph line, and on a colleague in Baltimore.

Fortunately, all went well. The friend in Baltimore received the message, decoded
it, and resent it within a few minutes, to the great relief of Morse and to the amazement
of the many congressmen assembled around him.

The Morse code, with its quick dots and dashes (Table 1), was extensively used for
many years, first for telegraphy, and beginning in the 1890s, for early radio communi-
cations. The development of more advanced communications technologies in the 20th
century displaced the Morse code, which is now largely obsolete. Today, it is used for
emergencies, for navigational radio beacons, land mobile transmitter identification, and
by continuous wave amateur radio operators.

A - N - 1 - Period Lo
B - (@) -—= 2 .- Comma -—..—=
c -.- P -- 3 -- Colon -—...
Ch ---- Q --.- 4 ... Question mark e
D - R - 5 ... Apostrophe Lo
E S 6 -.... Hyphen —-
F - T - 7T - Dash - ..
G -- U - 8 —-—.. Parentheses -.—=.-
H \% - 9 -—. Quotation marks .-..-.
I W - 0 --—-

J -—= X -..-

K -.- Y -.--

L - Z -

M _

Table 1: The Morse Code for English.

Our interest in the Morse code is primarily with a little-known aspect of this code.
In addition to its advantages for telecommunications, the Morse code is also an early
example of text compression. The various dot-dash codes developed by Morse (and
possibly also by his associate, Alfred Vail) have different lengths, and Morse intuitively
assigned the short codes (a single dot and a single dash) to the letters E and T, the
longer, four dots-dashes, he assigned to Q, X, Y, and Z. The even longer, five dots-
dashes codes, were assigned to the 10 digits, and the longest codes (six dots and dashes)
became those of the punctuation marks. Morse also specified that the signal for error
is eight consecutive dots, in response to which the receiving operator should delete the
last word received.
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It is interesting to note that Morse was not the first to think of compression (in
terms of time saving) by means of a code. The well-known Braille code for the blind
was developed by Louis Braille in the 1820s and is still in common use today. It consists
of groups (or cells) of 3 x 2 dots each, embossed on thick paper. Each of the six dots
in a group may be flat or raised, implying that the information content of a group is
equivalent to six bits, resulting in 64 possible groups. The letters, digits, and common
punctuation marks do not require all 64 codes, which is why the remaining groups may
be used to code common words—such as and, for, and of—and common strings of
letters—such as ound, ation, and th.

The Morse code has another feature that makes it relevant to us. Because the
individual codes have different lengths, there must be a way to identify the end of a
code. Morse solved this problem by requiring accurate relative timing. If the duration
of a dot is taken to be one unit, then that of a dash is three units, the space between
the dots and dashes of one character is one unit, the space between characters is three
units, and the interword space is six units (five for automatic transmission). This book
is concerned with the use of variable-length codes to compress digital data. With these
codes, it is important not to have any extra spaces. In fact, there is no such thing as a
space, because computers use only zeros and 1’s. Thus, when a string of data symbols is
compressed by assigning short codes (that are termed “codewords”) to the symbols, the
codewords (whose lengths vary) are concatenated into a long binary string without any
spaces or separators. Such variable-length codes must therefore be designed to allow for
unambiguous reading. Somehow, the decoder should be able to read bits and identify
the end of each codeword. Such codes are referred to as uniquely decodable or uniquely
decipherable (UD).

Variable-length codes have become important in many areas of computer science.
This book is a survey of this important topic. It presents the principles underlying
this type of codes and describes the important classes of variable-length codes. Many
examples illustrate the applications of these codes to data compression. The book is
devoted to the codes, which is why it describes very few actual compression algorithms.
Notice that many important (and some not so important) methods, algorithms, and
techniques for compressing data are described in detail in [Salomon 06].

The term representation is central to our discussion. A number can be represented
in decimal, binary, or any other number base (or number system, see Section 2.18).
Mathematically, a representation is a bijection (or a bijective function) of an infinite,
countable set S; of strings onto another set Sy of strings (in practice, Sy consists of
binary strings, but it may also be ternary or based on other number systems), such
that any concatenation of any elements of Sy is UD. The elements of Sy are called data
symbols and those of So are codewords. Set S is an alphabet and set S is a code.
An interesting example is the standard binary notation. We normally refer to it as the
binary representation of the integers, but according to the definition above it is not a
representation because it is not UD. It is easy to see, for example, that a string of binary
codewords that starts with 11 can be either two consecutive 1’s or the code of 3.

A function f: X = Y is said to be bijective, if for every y € Y, there is exactly one
x € X such that f(z) =v.
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Figure 3.19 and Table 3.22 list several variable-length UD codes assigned to the 26
letters of the English alphabet.

This book is aimed at readers who have a basic knowledge of data compression
and who want to know more about the specific codes used by the various compression
algorithms. The necessary mathematical background includes logarithms, polynomials,
a bit of calculus and linear algebra, and the concept of probability. This book is not
intended as a guide to software implementors and has no programs. Errors, mistypes,
comments, and questions should be sent to the author’s email address below.

It is my pleasant duty to acknowledge the substantial help and encouragement I
have received from Giovanni Motta and Cosmin Truta and for their painstaking efforts.
They read drafts of the text, found many errors and misprints, and provided valuable
comments and suggestions that improved this book and made it what it is. Giovanni
also wrote part of Section 2.12.

If, by any chance, I have omitted anything more or less proper or necessary, I beg
forgiveness, since there is no one who is without fault and circumspect in all matters.
—Leonardo Fibonacci, Libe Abaci (1202)

dsalomon@csun.edu David Salomon

The Preface is the most important part of
the book. Even reviewers read a preface.

—Philip Guedalla
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Introduction

The discipline of data compression has its origins in the 1950s and 1960s and has ex-
perienced rapid growth in the 1980s and 1990s. Currently, data compression is a vast
field encompassing many approaches and techniques. A student of this field realizes
quickly that the various compression algorithms in use today are based on and require
knowledge of diverse physical and mathematical concepts and topics, some of which are
included in the following, incomplete list: Fourier transforms, finite automata, Markov
processes, the human visual and auditory systems—statistical terms, distributions, and
concepts—Unicode, XML, convolution, space-filling curves, Voronoi diagrams, interpo-
lating polynomials, Fibonacci numbers, polygonal surfaces, data structures, the Van-
dermonde determinant, error-correcting codes, fractals, the Pascal triangle, fingerprint
identification, and analog and digital video.

Faced with this complexity, I decided to try and classify in this short introduction
most (but not all) of the approaches to data compression in four classes as follows:
(1) block-to-block codes, (2) block-to-variable codes, (3) variable-to-block codes, and
(4) variable-to-variable codes (the term “fixed” is sometimes used instead of “block”).
Other approaches to compression, such as mathematical transforms (orthogonal or
wavelet) and the technique of arithmetic coding, are not covered here. Following is
a short description of each class.

»  Block-to-block codes constitute a class of techniques that input n bits of raw data
at a time, perform a computation, and output the same number of bits. Such a process
results in no compression; it only transforms the data from its original format to a
format where it becomes easy to compress. Thus, this class consists of transforms. The
discrete wavelet, discrete cosine, and linear prediction are examples of transforms that
are commonly used as the first step in the compression of various types of data. Here is
a short description of linear prediction.

Audio data is common in today’s computers. We all have mp3, FLAC, and other
types of compressed audio files in our computers. A typical lossless audio compression
technique consists of three steps. (1) The original sound is sampled (digitized). (2) The
audio samples are converted, in a process that employs linear prediction, to small
numbers called residues. (3) The residues are replaced by variable-length codes. The
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last step is the only one that produces compression.

Linear prediction of audio samples is based on the fact that most audio samples
are similar to their near neighbors. One second of audio is normally converted to many
thousands of audio samples (44,100 samples per second is typical), and adjacent samples
tend to be similar because sound rarely varies much in pitch or frequency during one
second. If we denote the current audio sample by s(t), then linear prediction computes a
predicted value §(t) from the p immediately-preceding samples by a linear combination
of the form

5(t) = Zais(t — ).

Parameter p depends on the specific algorithm and many also be user controlled.
Parameters a; are linear coefficients that are also determined by the algorothm.

If the prediction is done properly, the difference (which is termed residue or residual)
e(t) = s(t)—§(t) will almost always be a small (positive or negative) number, although in
principle it could be about as large as s(t) or —s(t). The difference between the various
linear prediction methods is in the number p of previous samples that they employ and
in the way they determine the linear coefficients a;.

»  Block-to-variable codes are the most important of the four types discussed here.
Each symbol of the input alphabet is assigned a variable-length code according to its
frequency of occurrence (or, equivalently, its probability) in the data. Compression
is achieved if short codes are assigned to commonly-occurring (high probability) symbols
and long codes are assigned to rare symbols. Many statistical compression methods
employ this type of coding, most notably the Huffman method (Section 1.13). The
difference between the various methods is mostly in how they compute or estimate the
probabilities of individual data symbols. There are three approaches to this problem,
namely static codes, a two-pass algorithm, and adaptive methods.

Static codes. It is possible to construct a set of variable-length codes and perma-
nently assign each code to a data symbol. The result is a static code table that is built
into both encoder and decoder. To construct such a table, the developer has to analyze
large quantities of data and determine the probability of each symbol. For example,
someone who develops a compression method that employs this approach to compress
text, has to start by selecting a number of representative “training” documents, count
the number of times each text character appears in those documents, compute frequen-
cies of occurrence, and use this fixed, static statistical model to assign variable-length
codewords to the individual characters. A compression method based on a static code
table is simple, but the results (the compression ratio for a given text file) depend on
how much the data resembles the statistics of the training documents.

A two-pass algorithm. The idea is to read the input data twice. The first pass simply
counts symbol frequencies and the second pass performs the actual compression by
replacing each data symbol with a variable-length codeword. In between the two passes,
the code table is constructed by utilizing the symbols’ frequencies in the particular
data being compressed (the statistical model is taken from the data itself). Such a
method features very good compression, but is slow because reading a file from an input
device, even a fast disk, is slower than memory-based operations. Also, the code table
is constructed individually for each data file being compressed, so it has to be included
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in the compressed file, for the decoder’s use. This reduces the compression ratio but not
significantly, because a code table typically contains one variable-length code for each
of the 128 ASCII characters or for each of the 256 8-bit bytes, so its total length is only
a few hundred bytes.

An adaptive method starts with an empty code table, or with a tentative table, and
modifies the table as more data is read and processed. Initially, the codes assigned to
the data symbols are inappropriate and are not based on the (unknown) probabilities of
the data symbols. But as more data is read, the encoder acquires better statistics of the
data and exploits it to improve the codes (the statistical model adapts itself gradually
to the data that is being read and compressed). Such a method has to be designed to
permit the decoder to mimic the operations of the encoder and modify the code table
in lockstep with it.

A simple statistical model assigns variable-length codes to symbols based on sym-
bols’ probabilities. It is possible to improve the compression ratio significantly by basing
the statistical model on probabilities of pairs or triplets of symbols (digrams and tri-
grams), instead of probabilities of individual symbols. The result is an n-order statistical
compression method where the previous n symbols are used to predict (i.e., to assign
a probability to) the current symbol. The PPM (prediction by partial matching) and
DMC (dynamic Markov coding) methods are examples of this type of algorithm.

It should be noted that arithmetic coding, an important statistical compression
method, is included in this class, but operates differently. Instead of assigning codes to
individual symbols (bits, ASCII codes, Unicodes, bytes, etc.), it assigns one long code
to the entire input file.

m  Variable-to-block codes is a term that refers to a large group of compression tech-
niques where the input data is divided into chunks of various lengths and each chunk of
data symbols is encoded by a fixed-size code. The most important members of this group
are run-length encoding and the various LZ (dictionary-based) compression algorithms.

A dictionary-based algorithm saves bits and pieces of the input data in a special
buffer called a dictionary. When the next item is read from the input file, the algorithm
tries to locate it in the dictionary. If the item is found in the dictionary, the algorithm
outputs a token with a pointer to the item plus other information such as the length of
the item. If the item is not in the dictionary, the algorithm adds it to the dictionary
(based on the assumption that once an item has appeared in the input, it is likely that
it will appear again) and outputs the item either in raw format or as a special, literal
token. Compression is achieved if a large item is replaced by a short token. Quite a
few dictionary-based algorithms are currently known. They have been developed by
many scientists and researchers, but are all based on the basic ideas and pioneering
work of Jacob Ziv and Abraham Lempel, described in [Ziv and Lempel 77] and [Ziv and
Lempel 78].

A well-designed dictionary-based algorithm can achieve high compression because a
given item tends to appear many times in a data file. In a text file, for example, the same
words and phrases may appear many times. Words that are common in the language
and phrases that have to do with the topic of the text, tend to appear again and again. If
they are kept in the dictionary, then more and more phrases can be replaced by tokens,
thereby resulting in good compression.
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The differences between the various LZ dictionary methods are in how the dictionary
is organized and searched, in the format of the tokens, in the way the algorithm handles
items not found in the dictionary, and in the various improvements it makes to the basic
method. The many variants of the basic LZ approach employ improving techniques such
as a circular buffer, a binary search tree, variable-length codes or dynamic Huffman
coding to encode the individual fields of the token, and other tricks of the programming
trade. Sophisticated dictionary organization eliminates duplicates (each data symbol is
stored only once in the dictionary, even if it is part of several items), implements fast
search (binary search or a hash table instead of slow linear search), and may discard
unused items from time to time in order to regain space.

The other important group of variable-to-block codes is run-length encoding (RLE).
We know that data can be compressed because the common data representations are
redundant, and one type of redundancy is runs of identical symbols. Text normally
does not feature long runs of identical characters (the only examples that immediately
come to mind are runs of spaces and of periods), but images, especially monochromatic
(black and white) images, may have long runs of identical pixels. Also, an audio file
may have silences, and even one-tenth of second worth of silence typically translates to
4,410 identical audio samples.

A typical run-length encoder identifies runs of the same symbol and replaces each
run with a token that includes the symbol and the length of the run. If the run is shorter
than a token, the raw symbols are output, but the encoder has to make sure that the
decoder can distinguish between tokens and raw symbols.

Since runs of identical symbols are not common in many types of data, run-length
encoding is often only one part of a larger, more sophisticated compression algorithm.

m  Variable-to-variable codes is the general name used for compression methods that
select variable-length chunks of input symbols and compress each chunk by replacing it
with a variable-length code.

A simple example of variable-to-variable codes is run-length encoding combined
with Golomb codes, especially when the data to be compressed is binary. Imagine a
long string of 0’s and 1’s where one value (say, 0) occurs more often than the other
value. This value is referred to as the more probable symbol (MPS), while the other
value becomes the LPS. Such a string tends to have runs of the MPS and Section 2.23
shows that the Golomb codes are the best candidate to compress such runs. Each run
has a different length, and the various Golomb codewords also have different lengths,
turning this application into an excellent example of variable-to-variable codes.

Other examples of variable-to-variable codes are hybrid methods that consist of
several parts. A hybrid compression program may start by reading a chunk of input and
looking it up in a dictionary. If a match is found, the chunk may be replaced by a token,
which is then further compressed (in another part of the program) by RLE or variable-
length codes (perhaps Huffman or Golomb). The performance of such a program may
not be spectacular, but it may produce good results for many different types of data.
Thus, hybrids tend to be general-purpose algorithms that can deal successfully with
text, images, video, and audio data.

This book starts with several introductory sections (Sections 1.1 through 1.6) that
discuss information theory concepts such as entropy and redundancy, and concepts that
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are used throughout the text, such as prefix codes, complete codes, and universal codes.

The remainder of the text deals mostly with block-to-variable codes, although its
first part deals with the Tunstall codes and other variable-to-block codes. It concen-
trates on the codes themselves, not on the compression algorithms. Thus, the individual
sections describe various variable-length codes and classify them according to their struc-
ture and organization. The main techniques employed to design variable-length codes
are the following:

s The phased-in codes (Section 1.9) are a slight extension of fixed-size codes and
may contribute a little to the compression of a set of consecutive integers by changing
the representation of the integers from fixed n bits to either n or n — 1 bits (recursive
phased-in codes are also described).

n  Self-delimiting codes. These are intuitive variable-length codes—mostly due to
Gregory Chaitin, the originator of algorithmic information theory—where a code signals
its end by means of extra flag bits. The self-delimiting codes of Section 1.12 are inefficient
and are not used in practice.

»  Prefix codes. Such codes can be read unambiguously (they are uniquely decodable,
or UD codes) from a long string of codewords because they have a special property (the
prefix property) which is stated as follows: Once a bit pattern is assigned as the code
of a symbol, no other codes can start with that pattern. The most common example of
prefix codes are the Huffman codes (Section 1.13). Other important examples are the
unary, start-step-stop, and start/stop codes (Sections 2.2 and 2.3, respectively).

»  Codes that include their own length. One way to construct a UD code for the
integers is to start with the standard binary representation of an integer and prepend to
it its length L1. The length may also have variable length, so it has to be encoded in some
way or have its length Ly prepended. The length of an integer n equals approximately
logn (where the logarithm base is the same as the number base of n), which is why
such methods are often called logarithmic ramp representations of the integers. The
most common examples of this type of codes are the Elias codes (Section 2.4), but
other types are also presented. They include the Levenstein code (Section 2.5), Eve—
Rodeh code (Section 2.6), punctured Elias codes (Section 2.7), the ternary comma code
(Section 2.9), Stout codes (Section 2.11), Boldi-Vigna (zeta) codes (Section 2.12), and
Yamamoto’s recursive code (Section 2.13).

= Suffix codes (codes that end with a special flag). Such codes limit the propagation
of an error and are therefore robust. An error in a codeword affects at most that
codeword and the one or two codewords following it. Most other variable-length codes
sacrifice data integrity to achieve short codes, and are fragile because a single error can
propagate indefinitely through a sequence of concatenated codewords. The taboo codes
of Section 2.15 are UD because they reserve a special string (the taboo) to indicate the
end of the code. Wang’s flag code (Section 2.16) is also included in this category.

Note. The term “suffix code” is ambiguous. It may refer to codes that end with a
special bit pattern, but it also refers to codes where no codeword is the suffix of another
codeword (the opposite of prefix codes). The latter meaning is used in Section 3.5, in
connection with bidirectional codes.
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n  Flag codes. A true flag code differs from the suffix codes in one interesting aspect.
Such a code may include the flag inside the code, as well as at its right end. The only
example of a flag code is Yamamoto’s code, Section 2.17.

m  Codes based on special number bases or special number sequences. We normally
use decimal numbers, and computers use binary numbers, but any integer greater than
1 can serve as the basis of a number system and so can noninteger (real) numbers. It is
also possible to construct a sequence of numbers (real or integer) that act as weights
of a numbering system. The most important examples of this type of variable-length
codes are the Fibonacci (Section 2.19), Goldbach (Section 2.21), and additive codes
(Section 2.22).

»  The Golomb codes of Section 2.23 are designed in a special way. An integer param-
eter m is selected and is used to encode an arbitrary integer n in two steps. In the first
step, two integers ¢ and r (for quotient and remainder) are computed from n such that
n can be fully reconstructed from them. In the second step, g is encoded in unary and
is followed by the binary representation of r, whose length is implied by the parameter
m. The Rice code of Section 2.24 is a special case of the Golomb codes where m is an
integer power of 2. The subexponential code (Section 2.25) is related to the Rice codes.

n  Codes ending with “1” are the topic of Section 2.26. In such a code, all the code-
words end with a 1, a feature that makes them the natural choice in special applications.

m  Variable-length codes are designed for data compression, which is why implementors
select the shortest possible codes. Sometimes, however, data reliability is a concern, and
longer codes may help detect and isolate errors. Thus, Chapter 3 discusses robust codes.
Section 3.3 presents synchronous prefix codes. These codes are useful in applications
where it is important to limit the propagation of errors. Bidirectional (or reversible)
codes (Sections 3.5 and 3.6) are also designed for increased reliability by allowing the
decoder to read and identify codewords either from left to right or in reverse.
The following is a short discussion of terms that are commonly used in this book.

m  Source. A source of data items can be a file stored on a disk, a file that is input
from outside the computer, text input from a keyboard, or a program that generates
data symbols to be compressed or processed in some way. In a memoryless source, the
probability of occurrence of a data symbol does not depend on its context. The term
ii.d. (independent and identically distributed) refers to a set of sources that have the
same probability distribution and are mutually independent.

»  Alphabet. This is the set of symbols that an application has to deal with. An
alphabet may consist of the 128 ASCII codes, the 256 8-bit bytes, the two bits, or any
other set of symbols.

s Random variable. This is a function that maps the results of random experiments
to numbers. For example, selecting many people and measuring their heights is a ran-
dom variable. The number of occurrences of each height can be used to compute the
probability of that height, so we can talk about the probability distribution of the ran-
dom variable (the set of probabilities of the heights). A special important case is a
discrete random variable. The set of all values that such a variable can assume is finite
or countably infinite.
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s Compressed stream (or encoded stream). A compressor (or encoder) compresses
data and generates a compressed stream. This is often a file that is written on a disk
or is stored in memory. Sometimes, however, the compressed stream is a string of bits
that are transmitted over a communications line.

m  The acronyms MSB and LSB refer to most-significant-bit and least-significant-bit,
respectively.

= The notation 1?07 indicates a bit string of i consecutive 1’s followed by j zeros.

Understanding is, after all, what science is all about—and science
is a great deal more than mere mindless computation.

—Roger Penrose, Shadows of the Mind (1996)

(G e



1
Basic Codes

The discussion in this chapter starts with codes, prefix codes, and information theory
concepts. This is followed by a description of basic codes such as variable-to-block codes,
phased-in codes, and the celebrated Huffman code.

1.1 Codes, Fixed- and Variable-Length

A code is a symbol that stands for another symbol. At first, this idea seems pointless.
Given a symbol S, what is the use of replacing it with another symbol Y? However, it
is easy to find many important examples of the use of codes. Here are a few.

= Any language and any system of writing are codes. They provide us with symbols
S that we use in order to express our thoughts Y.

s Acronyms and abbreviations can be considered codes. Thus, the string IBM is a
symbol that stands for the much longer symbol “International Business Machines” and
the well-known French university Ecole Supérieure D’électricité is known to many simply
as Supélec.

»  Cryptography is the art and science of obfuscating messages. Before the age of
computers, a message was typically a string of letters and was encrypted by replacing
each letter with another letter or with a number. In the computer age, a message is a
binary string (a bitstring) in a computer, and it is encrypted by replacing it with another
bitstring, normally of the same length.

s Error control. Messages, even secret ones, are often transmitted along communica-
tions channels and may become damaged, corrupted, or garbled on their way from trans-
mitter to receiver. We often experience low-quality, garbled telephone conversations.
Even experienced pharmacists often find it difficult to read and understand a hand-
written prescription. Computer data stored on magnetic disks may become corrupted
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because of exposure to magnetic fields or extreme temperatures. Music and movies
recorded on optical discs (CDs and DVDs) may become unreadable because of scratches.
In all these cases, it helps to augment the original data with error-control codes. Such
codes—formally titled channel codes, but informally known as error-detecting or error-
correcting codes—employ redundancy to detect and even correct, certain types of errors.

»  ASCII and Unicode. These are character codes that make it possible to store
characters of text as bitstrings in a computer. The ASCII code, which dates back to the
1960s, assigns 7-bit codes to 128 characters including 26 letters (upper- and lowercase),
the 10 digits, certain punctuation marks, and several control characters. The Unicode
project assigns 16-bit codes to many characters, and has a provision for even longer
codes. The long codes make it possible to store and manipulate many thousands of
characters, taken from many languages and alphabets (such as Greek, Cyrillic, Hebrew,
Arabic, and Indic), and including punctuation marks, diacritics, mathematical symbols,
technical symbols, arrows, and dingbats.

The last example illustrates the use of codes in the field of computers and computa-
tions. Mathematically, a code is a mapping. Given an alphabet of symbols, a code maps
individual symbols or strings of symbols to codewords, where a codeword is a string of
bits, a bitstring. The process of mapping a symbol to a codeword is termed encoding
and the reverse process is known as decoding.

Codes can have a fixed or variable length, and can be static or adaptive (dynamic).
A static code is constructed once and never changes. ASCII and Unicode are examples
of such codes. A static code can also have variable length, where short codewords are
assigned to the commonly-occurring symbols. A variable-length, static code is normally
designed based on the probabilities of the individual symbols. Each type of data has
different probabilities and may benefit from a different code. The Huffman method
(Section 1.13) is an example of an excellent variable-length, static code that can be
constructed once the probabilities of all the symbols in the alphabet are known. In
general, static codes that are also variable-length can match well the lengths of individual
codewords to the probabilities of the symbols. Notice that the code table must normally
be included in the compressed file, because the decoder does not know the symbols’
probabilities (the model of the data) and so has no way to construct the codewords
independently.

A dynamic code varies over time, as more and more data is read and processed
and more is known about the probabilities of the individual symbols. The dynamic
(adaptive) Huffman algorithm [Salomon 06] is an example of such a code.

Fixed-length codes are known as block codes. They are easy to implement in soft-
ware. It is easy to replace an original symbol with a fixed-length code, and it is equally
easy to start with a string of such codes and break it up into individual codes that are
then replaced by the original symbols.

There are cases where variable-length codes (VLCs) have obvious advantages. As
their name implies, VLCs are codes that have different lengths. They are also known
as variable-size codes. A set of such codes consists of short and long codewords. The
following is a short list of important applications where such codes are commonly used.

= Data compression (or source coding). Given an alphabet of symbols where certain
symbols occur often in messages, while other symbols are rare, it is possible to compress
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messages by assigning short codes to the common symbols and long codes to the rare
symbols. This is an important application of variable-length codes.

»  The Morse code for telegraphy, originated in the 1830s by Samuel Morse and Alfred
Vail, employs the same idea. It assigns short codes to commonly-occurring letters (the
code of E is a dot and the code of T is a dash) and long codes to rare letters and
punctuation marks (--.- to Q, -=.. to Z, and --..-- to the comma).

m  Processor design. Part of the architecture of any computer is an instruction set
and a processor that fetches instructions from memory and executes them. It is easy
to handle fixed-length instructions, but modern computers normally have instructions
of different sizes. It is possible to reduce the overall size of programs by designing the
instruction set such that commonly-used instructions are short. This also reduces the
processor’s power consumption and physical size and is especially important in embedded
processors, such as processors designed for digital signal processing (DSP).

n  Country calling codes. ITU-T recommendation E.164 is an international standard
that assigns variable-length calling codes to many countries such that countries with
many telephones are assigned short codes and countries with fewer telephones are as-
signed long codes. These codes also obey the prefix property (Section 1.2) which means
that once a calling code C has been assigned, no other calling code will start with C.

= The International Standard Book Number (ISBN) is a unique number assigned to a
book, to simplify inventory tracking by publishers and bookstores. The ISBN numbers
are assigned according to an international standard known as ISO 2108 (1970). One
component of an ISBN is a country code, that can be between one and five digits long.
This code also obeys the prefix property. Once C' has been assigned as a country code,
no other country code will start with C.

= VCR Plus+ (also known as G-Code, VideoPlus+, and ShowView) is a prefix,
variable-length code for programming video recorders. A unique number, a VCR Plus+,
is computed for each television program by a proprietary algorithm from the date,
time, and channel of the program. The number is published in television listings in
newspapers and on the Internet. To record a program on a VCR, the number is located
in a newspaper and is typed into the video recorder. This programs the recorder to record
the correct channel at the right time. This system was developed by Gemstar-TV Guide
International [Gemstar 06].

I gave up on new poetry myself thirty years ago, when most of it began to read like
coded messages passing between lonely aliens on a hostile world.
—Russell Baker
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1.2 Prefix Codes

Encoding a string of symbols a; with VLCs is easy. No special methods or algorithms
are needed. The software reads the original symbols a; one by one and replaces each
a; with its binary, variable-length code ¢;. The codes are concatenated to form one
(normally long) bitstring. The encoder either includes a table with all the pairs (a;, ¢;)
or it executes a procedure to compute code ¢; from the bits of symbol a;.

Decoding is slightly more complex, because of the different lengths of the codes.
When the decoder reads the individual bits of VLCs from a bitstring, it has to know
either how long each code is or where each code ends. This is why a set of variable-length
codes has to be carefully chosen and why the decoder has to be taught about the codes.
The decoder either has to have a table of all the valid codes, or it has to be told how to
identify valid codes.

We start with a simple example. Given the set of four codes a; = 0, ag = 01,
az = 011, and a4 = 111 we easily encode the message asasasaijasas as the bitstring
01/011]|011]0|01]111. This string can be decoded unambiguously, but not easily. When
the decoder inputs a 0, it knows that the next symbol is either a;, as, or az, but the
decoder has to input more bits to find out how many 1’s follow the 0 before it can
identify the next symbol. Similarly, given the bitstring 011...111, the decoder has to
read the entire string and count the number of consecutive 1’s before it finds out how
many 1’s (zero, one, or two 1’s) follow the single 0 at the beginning. We say that such
codes are not instantaneous.

In contrast, the following set of VLCs a; = 0, az = 10, ag = 110, and a4 = 111
is similar and is also instantaneous. Given a bitstring that consists of these codes,
the decoder reads consecutive 1’s until it has read three 1’s (an ay4) or until it has read
another 0. Depending on how many 1’s precede the 0 (zero, one, or two 1’s), the decoder
knows whether the next symbol is a1, as, or az. The 0 acts as a separator, which is why
instantaneous codes are also known as comma codes. The rules that drive the decoder
can be considered a finite automaton or a decision tree.

The next example is similar. We examine the set of VLCs a; = 0, as = 10, az = 101,
and a4 = 111. Only the code of a3 is different, but a little experimenting shows that
this set of VLCs is bad because it is not uniquely decodable (UD). Given the bitstring
0101111..., it can be decoded either as ajaszay ... or ajasay. . ..

This observation is crucial because it points the way to the construction of large
sets of VLCs. The set of codes above is bad because 10, the code of as, is also the prefix
of the code of ag. When the decoder reads 10.. ., it often cannot tell whether this is the
code of ay or the start of the code of as.

Thus, a useful, practical set of VLCs has to be instantaneous and has to satisfy the
following prefiz property. Once a code c is assigned to a symbol, no other code should
start with the bit pattern c. Prefix codes are also referred to as prefix-free codes, prefix
condition codes, or instantaneous codes.

The following results can be proved: (1) A code is instantaneous if and only if it
is a prefix code. (2) The set of UD codes is larger than the set of instantaneous codes
(i.e., there are UD codes that are not instantaneous). (3) There is an instantaneous
variable-length code with codeword lengths L; if and only if there is a UD code with
these codeword lengths.
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The last of these results indicates that we cannot reduce the average word length of a
variable-length code by using a UD code rather than an instantaneous code. Thus, there
is no loss of compression performance if we restrict our selection of codes to instantaneous
codes.

A UD code that consists of r codewords of lengths [; must satisfy the Kraft inequality
(Section 1.5), but this inequality does not require a prefix code. Thus, if a code satisfies
the Kraft inequality it is UD, but if it is also a prefix code, then it is instantaneous.
This feature of a UD code being also instantaneous, comes for free, because there is no
need to add bits to the code and make it longer.

A prefix code (a set of codewords that satisfy the prefix property) is UD. Such a code
is also complete if adding any codeword to it turns it into a non-UD code. A complete
code is the largest UD code, but it also has a downside; it is less robust. If even a single
bit is accidentally modified or deleted (or if a bit is somehow added) during storage or
transmission, the decoder will lose synchronization and the rest of the transmission will
be decoded incorrectly (see the discussion of robust codes in Chapter 3).

While discussing UD and non-UD codes, it is interesting to note that the Morse
code is non-UD (because, for example, the code of I is “..” and the code of H is “....”),
so Morse had to make it UD by requiring accurate relative timing.

1.3 VLCs, Entropy, and Redundancy

Understanding data compression and its codes must start with understanding informa-
tion, because the former is based on the latter. Hence this short section that introduces
a few important concepts from information theory.

Information theory is the creation, in the late 1940s, of Claude
Shannon. Shannon tried to develop means for measuring the
amount of information stored in a symbol without considering
the meaning of the information. He discovered the connection be-
tween the logarithm function and information, and showed that
the information content (in bits) of a symbol with probability p
is —log, p. If the base of the logarithm is e, then the information
is measured in units called nats. If the base is 3, the information
units are trits, and if the base is 10, the units are referred to as
Hartleys.

Information theory is concerned with the transmission of information from a sender
(termed a source), through a communications channel, to a receiver. The sender and
receiver can be persons or machines and the receiver may, in turn, act as a sender
and send the information it has received to another receiver. The information is sent
in units called symbols (normally bits, but in verbal communications the symbols are
spoken words) and the set of all possible data symbols is an alphabet.

The most important single factor affecting communications is noise in the commu-
nications channel. In verbal communications, this noise is literally noise. When trying
to talk in a noisy environment, we may lose part of the discussion. In electronic com-
munications, the channel noise is caused by imperfect hardware and by factors such
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as sudden lightning, voltage fluctuations—old, high-resistance wires—sudden surge in
temperature, and interference from machines that generate strong electromagnetic fields.

The presence of noise implies that special codes should be used to increase the reli-
ability of transmitted information. This is referred to as channel coding or, in everyday
language, error-control codes.

The second most important factor affecting communications is sheer volume. Any
communications channel has a limited capacity. It can transmit only a limited number
of symbols per time unit. An obvious way to increase the amount of data transmitted is
to compress it before it is sent (in the source). Methods to compress data are therefore
known as source coding or, in everyday language, data compression. The feature that
makes it possible to compress data is the fact that individual symbols appear in our data
files with different probabilities. One important principle (although not the only one)
used to compress data is to assign variable-length codes to the individual data symbols
such that short codes are assigned to the common symbols.

Two concepts from information theory, namely entropy and redundancy, are needed
in order to fully understand the application of VLCs to data compression.

Roughly speaking, the term “entropy” as defined by Shannon is proportional to
the minimum number of yes/no questions needed to reach the answer to some question.
Another way of looking at entropy is as a quantity that describes how much information
is included in a signal or event. Given a discrete random variable X that can have n
values z; with probabilities P;, the entropy H(X) of X is defined as

n
H(X)=- Z P;log, P;.
=1

A detailed discussion of information theory is outside the scope of this book. In-
terested readers are referred to the many texts on this subject. Here, we will only
show intuitively why the logarithm function plays such an important part in measuring
information.

Imagine a source that emits symbols a; with probabilities p;. We assume that the
source is memoryless, i.e., the probability of a symbol being emitted does not depend on
what has been emitted in the past. We want to define a function I(a;) that will measure
the amount of information gained when we discover that the source has emitted symbol
a;. Function I will also measure our uncertainty as to whether the next symbol will
be a;. Alternatively, I(a;) corresponds to our surprise in finding that the next symbol is
a;. Clearly, our surprise at seeing a; emitted is inversely proportional to the probability
p; (we are surprised when a low-probability symbol is emitted, but not when we notice
a high-probability symbol). Thus, it makes sense to require that function I satisfies the
following conditions:

1. I(a;) is a decreasing function of p;, and returns 0 when the probability of a symbol
is 1. This reflects our feeling that high-probability events convey less information.

2. I(aaj) = I(a;) + I(a;). This is a result of the source being memoryless and
the probabilities being independent. Discovering that a; was immediately followed by
aj, provided us with the same information as knowing that a; and a; were emitted
independently.
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Even those with a minimal mathematical background will immediately see that the
logarithm function satisfies the two conditions above. This is the first example of the
relation between the logarithm function and the quantitative measure of information.
The next few paragraphs illustrate other connections between the two.

Consider the case of person A selecting at random an integer N between 1 and
64 and person B having to guess what it is. What is the minimum number of yes/no
questions that are needed for B to guess N? Those familiar with the technique of binary
search know the answer. Using this technique, B should divide the interval 1-64 in two,
and should start by asking “is N between 1 and 327” If the answer is no, then N is in
the interval 33 to 64. This interval is then divided by two and B’s next question should
be “is N between 33 and 487” This process continues until the interval selected by B
shrinks to a single number.

It does not take much to see that exactly six questions are necessary to determine
N. This is because 6 is the number of times 64 can be divided in half. Mathematically,
this is equivalent to writing 6 = log, 64, which is why the logarithm is the mathematical
function that quantifies information.

What we call reality arises in the last analysis from the posing of yes/no questions. All
things physical are information-theoretic in origin, and this is a participatory universe.
—John Wheeler
Another approach to the same problem is to consider a nonnegative integer N and
ask how many digits does it take to express it. The answer, of course, depends on N.
The greater N, the more digits are needed. The first 100 nonnegative integers (0 through
99) can be expressed by two decimal digits. The first 1000 such integers can be expressed
by three digits. Again it does not take long to see the connection. The number of digits
required to represent N equals approximately log N. The base of the logarithm is the
same as the base of the digits. For decimal digits, use base 10; for binary digits (bits),
use base 2. If we agree that the number of digits it takes to express IV is proportional
to the information content of IV, then again the logarithm is the function that gives us
a measure of the information. As an aside, the precise length, in bits, of the binary
representation of a positive integer n is

1+ [logs | (1.1)

or, alternatively, [log,(n + 1)]. When n is represented in any other number base b, its
length is given by the same formula, but with the logarithm in base b instead of 2.

Here is another observation that illuminates the relation between the logarithm and
information. A 10-bit string can have 20 = 1024 values. We say that such a string may
contain one of 1024 messages, or that the length of the string is the logarithm of the
number of possible messages the string can convey.

The following example sheds more light on the concept of entropy and will prepare us
for the definition of redundancy. Given a set of two symbols a; and ay, with probabilities
P, and Ps, respectively, we compute the entropy of the set for various values of the
probabilities. Since Pi+P» = 1, the entropy of the set is — P logy Py —(1—P; ) log,(1—Py)
and the results are summarized in Table 1.1.

When P; = P;, at least one bit is required to encode each symbol, reflecting the
fact that the entropy is at its maximum, the redundancy is zero, and the data cannot be
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compressed. However, when the probabilities are very different, the minimum number
of bits required per symbol drops significantly. We may not be able to conceive a
compression method that expresses each symbol in just 0.08 bits, but we know that
when P; = 99%, such compression is theoretically possible.

P P, Entropy

0.99 0.01 0.08
0.90 0.10 0.47
0.80 0.20 0.72
0.70  0.30 0.88
0.60 0.40 0.97
0.50 0.50 1.00

Table 1.1: Probabilities and Entropies of Two Symbols.

In general, the entropy of a set of n symbols depends on the individual probabilities
P; and is largest when all n probabilities are equal. Data representations often include
redundancies and data can be compressed by reducing or eliminating these redundancies.
When the entropy is at its maximum, the data has maximum information content and
therefore cannot be further compressed. Thus, it makes sense to define redundancy as
a quantity that goes down to zero as the entropy reaches its maximum.

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.
—Claude Shannon (1948)

To understand the definition of redundancy, we start with an alphabet of symbols
a;, where each symbol appears in the data with probability P;. The data is compressed
by replacing each symbol with an [;-bit-long code. The average code length is the sum
> Pl; and the entropy (the smallest number of bits required to represent the symbols)
is > [—Pilog, P;]. The redundancy R of the set of symbols is defined as the average
code length minus the entropy. Thus,

R= ZPZ Z —P;log, P)]. (1.2)

The redundancy is zero when the average code length equals the entropy, i.e., when the
codes are the shortest and compression has reached its maximum.

Given a set of symbols (an alphabet), we can assign binary codes to the individual
symbols. It is easy to assign long codes to symbols, but most practical applications
require the shortest possible codes.

Consider the four symbols a;, as, az, and a4. If they appear in our data strings
with equal probabilities (= 0.25), then the entropy of the data is —4(0.251og, 0.25) = 2.
Two is the smallest number of bits needed, on average, to represent each symbol in this
case. We can simply assign our symbols the four 2-bit codes 00, 01, 10, and 11. Since
the probabilities are equal, the redundancy is zero and the data cannot be compressed
below two bits/symbol.
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Next, consider the case where the four symbols occur with different probabilities
as shown in Table 1.2, where a; appears in the data (on average) about half the time,
as and agz have equal probabilities, and a4 is rare. In this case, the data has entropy
—(0.491og, 0.49+0.251og, 0.2540.25 log, 0.25+0.01 log, 0.01) ~ —(—0.050 —0.5—0.5—
0.066) = 1.57. The smallest number of bits needed, on average, to represent each symbol
has dropped to 1.57.

Symbol Prob. Codel Code2

ay 49 1 1
as .25 01 01
as .25 010 000
a4 .01 001 001

Table 1.2: Variable-Length Codes.

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the redundancy
would be R = —1.57 + log, 4 = 0.43. This suggests assigning variable-length codes to
the symbols. Codel of Table 1.2 is designed such that the most common symbol, a1,
is assigned the shortest code. When long data strings are transmitted using Codel,
the average size (the number of bits per symbol) is 1 x 0.49 + 2 x 0.25 + 3 x 0.25 +
3 x 0.01 = 1.77, which is very close to the minimum. The redundancy in this case
is R = 1.77 — 1.57 = 0.2 bits per symbol. An interesting example is the 20-symbol
String a1asasa1a3a3a402a101a020201a1030101a02a3a01, where the four symbols occur with
approximately the right frequencies. Encoding this string with Codel yields the 37 bits:

1]010[01|1]010/010[001/01|1]1]01]01|1]1]010|1|1/01]010|1

(without the vertical bars). Using 37 bits to encode 20 symbols yields an average size of
1.85 bits/symbol, not far from the calculated average size. (The reader should bear in
mind that our examples are short. To obtain results close to the best that’s theoretically
possible, an input stream with at least thousands of symbols is needed.)

However, the conscientious reader may have noticed that Codel is bad because it
is not a prefix code. Code2, in contrast, is a prefix code and can be decoded uniquely.
Notice how Code2 was constructed. Once the single bit 1 was assigned as the code of aq,
no other codes could start with 1 (they all had to start with 0). Once 01 was assigned
as the code of as, no other codes could start with 01. This is why the codes of a3z and
a4 had to start with 00. Naturally, they became 000 and 001.

Designing variable-length codes for data compression must therefore take into ac-
count the following two principles: (1) assign short codes to the more frequent symbols
and (2) obey the prefix property. Following these principles produces short, unambiguous
codes, but not necessarily the best (i.e., shortest) ones. In addition to these principles,
an algorithm is needed to generate a set of shortest codes (ones with the minimum av-
erage size). The only input to such an algorithm is the frequencies of occurrence (or
alternatively the probabilities) of the symbols of the alphabet. The well-known Huffman
algorithm (Section 1.13) is such a method. Given a set of symbols whose probabilities
of occurrence are known, this algorithm constructs a set of shortest prefix codes for the
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symbols. Notice that such a set is normally not unique and there may be several sets of
codes with the shortest length.

The beauty of code is much more akin to the elegance, efficiency and clean lines of
a spiderweb. It is not the chaotic glory of a waterfall, or the pristine simplicity of a
flower. It is an aesthetic of structure, design and order.

—Charles Gordon

Notice that a UD code does not have to be a prefix code. It is possible, for example,
to designate the string 111 as a separator (a comma) to separate individual codewords
of different lengths, provided that no codeword contains 111. Other examples of a non-
prefix, variable-length codes are the C® code (page 115) and the generalized Fibonacci
C3 code (page 118).

1.4 Universal Codes

Mathematically, a code is a mapping. It maps source symbols into codewords. Math-
ematically, a source of messages is a pair (M, P) where M is a (possibly infinite) set
of messages and P is a function that assigns a nonzero probability to each message.
A message is mapped into a long bitstring whose length depends on the quality of the
code and on the probabilities of the individual symbols. The best that can be done is
to compress a message to its entropy H. A code is universal if it compresses messages
to codewords whose average length is bounded by C1(H 4 C2) where C1 and C2 are
constants greater than or equal to 1, i.e., an average length that is a constant multiple
of the entropy plus another constant. A universal code with large constants isn’t very
useful. A code with C'1 =1 is called asymptotically optimal.

A Huffman code often performs better than a universal code, but it can be used only
when the probabilities of the symbols are known. In contrast, a universal code can be
used in cases where only the ranking of the symbols’ probabilities is known. If we know
that symbol a5 has the highest probability and ag has the next largest one, we can assign
the shortest codeword to as and the next longer codeword to ag. Thus, universal coding
amounts to ranking of the source symbols. After ranking, the symbol with index 1 has
the largest probability, the symbol with index 2 has the next highest one, and so on.
We can therefore ignore the actual symbols and concentrate on their new indexes. We
can assign one codeword to index 1, another codeword to index 2, and so on, which is
why variable-length codes are often designed to encode integers (Section 2.1). Such a set
of variable-length codes can encode any number of integers with codewords that have
increasing lengths.

Notice also that a set of universal codes is fixed and so doesn’t have to be constructed
for each set of source symbols, a feature that simplifies encoding and decoding. However,
if we know the probabilities of the individual symbols (the probability distribution of
the alphabet of symbols), it becomes possible to tailor the code to the probability, or
conversely, to select a known code whose codewords fit the known probability distribu-
tion. In all cases, the code selected (the set of codewords) must be uniquely decodable
(UD). A non-UD code is ambiguous and therefore useless.
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1.5 The Kraft—McMillan Inequality

The Kraft—-McMillan inequality is concerned with the existence of a uniquely decodable
(UD) code. It establishes the relation between such a code and the lengths L; of its
codewords.

One part of this inequality, due to [McMillan 56], states that given a UD variable-
length code, with n codewords of lengths L;, the lengths must satisfy the relation

n
Yoot (1.3)
i=1

The other part, due to [Kraft 49], states the opposite. Given a set of n positive integers
(L1, Lo, ..., L,) that satisfy Equation (1.3), there exists an instantaneous variable-length
code such that the L; are the lengths of its individual codewords.

Together, both parts say that there is an instantaneous variable-length code with
codeword lengths L; if and only if there is a UD code with these codeword lengths. The
two parts do not say that a variable-length code is instantaneous or UD if and only if the
codeword lengths satisfy Equation (1.3). In fact, it is easy to check the three individual
code lengths of the code (0,01,011) and verify that 27! + 272 4+ 273 = 7/8. This code
satisfies the Kraft—-McMillan inequality and yet it is not instantaneous, because it is not
a prefix code. Similarly, the code (0,01,001) also satisfies Equation (1.3), but is not
UD. A few more comments on this inequality are in order:

s If a set of lengths L; satisfies Equation (1.3), then there exist instantaneous and
UD variable-length codes with these lengths. For example (0, 10,110).

» A UD code is not always instantaneous, but there exists an instantaneous code with
the same codeword lengths. For example, code (0,01, 11) is UD but not instantaneous,
while code (0,10, 11) is instantaneous and has the same lengths.

s The sum of Equation (1.3) corresponds to the part of the complete code tree that
has been used for codeword selection. This is why the sum has to be less than or equal
to 1. This intuitive explanation of the Kraft—-McMillan relation is explained in the next
paragraph.

We can gain a deeper understanding of this useful and important inequality by
constructing the following simple prefix code. Given five symbols a;, suppose that we
decide to assign 0 as the code of a;. Now all the other codes have to start with 1. We
therefore assign 10, 110, 1110, and 1111 as the codewords of the four remaining symbols.
The lengths of the five codewords are 1, 2, 3, 4, and 4, and it is easy to see that the sum

1 1 1 2
27 27242yt 2t = oo o+ =1
+ + + + 3 + 1 + 3 + 6
satisfies the Kraft-McMillan inequality. We now consider the possibility of constructing
a similar code with lengths 1, 2, 3, 3, and 4. The Kraft-McMillan inequality tells us
that this is impossible, because the sum

1 1 2 1
2—1 2—2 2—3 2—3 2—4 — _ _ N
+272 4270 4270 st It I8
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is greater than 1, and this is easy to understand when we consider the code tree. Starting
with a complete binary tree of height 4, such as the tree of Figure 3.17, it is obvious
that once 0 was assigned as a codeword, we have “used” one half of the tree and all
future codes would have to be selected from the other half of the tree. Once 10 was
assigned, we were left with only 1/4 of the tree. Once 110 was assigned as a codeword,
only 1/8 of the tree remained available for the selection of future codes. Once 1110 has
been assigned, only 1/16 of the tree was left, and that was enough to select and assign
code 1111. However, once we select and assign codes of lengths 1, 2, 3, and 3, we have
exhausted the entire tree and there is nothing left to select the last (4-bit) code from.

The Kraft—-McMillan inequality can be related to the entropy by observing that the
lengths L; can always be written as L; = —logy P; + E;, where E; is simply the amount
by which L; is greater than the entropy (the extra length of code 7).

This implies that

2—L7j — 2(10g2 Pi—El) — 210g2 Pi, /2E7 — Pl/2E7

In the special case where all the extra lengths are the same (F; = E), the Kraft—-McMillan
inequality says that

" SPLP 1
1223/2E:%:2—E:>2E21:>E20.
i=1
An unambiguous code has nonnegative extra length, meaning its length is greater than
or equal to the length determined by its entropy.
Here is a simple example of the use of this inequality. Consider the simple case of
n equal-length binary codewords. The size of each codeword is L; = log,n, and the
Kraft-McMillan sum is

ijz—Li :iz—%":Zi =1.

The inequality is satisfied, so such a code is UD.

A more interesting example is the case of n symbols where the first one is compressed
and the second one is expanded. We set L; = logyn — a, Ly = logon + e, and Ly =
Ly =---= L, =logyn, where a and e are positive. We show that e > a, which means
that compressing a symbol by a factor a requires expanding another symbol by a larger
factor. We can benefit from this only if the probability of the compressed symbol is
greater than that of the expanded symbol.

n

227Li _ 27L1 + 27L2 + zn:Qflogzn
1 3

n

— 9 log, n+a +92- log, n—e + Z 92— logon 2% 92~ log, n
1

90 g 2

+—t1-=.
n n n
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The Kraft—-McMillan inequality requires that

2¢ 27¢ 2 2¢ 27¢ 2
— 4+ +1--<1, or —+
n n n n

or 27¢ <2 —2% implying —e < log,(2 — 29), or e > —logy(2 — 2%).

The inequality above implies a < 1 (otherwise, 2 — 2% is negative) but a is also
positive (since we assumed compression of symbol 1). The possible range of values of
a is therefore (0, 1], and in this range e is greater than a, proving the statement above.
(It is easy to see that a =1 — € > —log, 0 = 00, and a = 0.1 — € > —log,(2 — 20!) =~
0.10745.)

It can be shown that this is just a special case of a general result that says, given
an alphabet of n symbols, if we compress some of them by a certain factor, then the
others must be expanded by a greater factor.

One of my most productive days was throwing away 1000 lines of code.
—Kenneth Thompson

1.6 Tunstall Code

The main advantage of variable-length codes is their variable lengths. Some codes are
short, others are long, and a clever assignment of codes to symbols can produce compres-
sion. On the downside, variable-length codes are difficult to work with. The encoder has
to construct each code from individual bits and pieces, has to accumulate and append
several such codes in a short buffer, wait until n bytes of the buffer are full of code bits
(where n must be at least 1), write the n bytes onto the output, shift the buffer n bytes,
and keep track of the location of the last bit placed in the buffer. The decoder has to go
through the reverse process. It is definitely easier to deal with fixed-size codes, and the
Tunstall codes described here are an example of how such codes can be designed. The
idea is to construct a set of fixed-size codes, each encoding a variable-length string of
input symbols. As a result, these codes are also known as variable-to-fixed (or variable-
to-block) codes, in contrast to the variable-length codes which are also referred to as
fixed-to-variable.

Imagine an alphabet that consists of two symbols A and B where A is more common.
Given a typical string from this alphabet, we expect substrings of the form AA, AAA,
AB, AAB, and B, but rarely strings of the form BB. We can therefore assign fixed-size
codes to the following five substrings as follows. AA = 000, AAA = 001, AB = 010,
ABA =011, and B = 100. A rare occurrence of two consecutive Bs will be encoded by
100100, but most occurrences of B will be preceded by an A and will be coded by 010,
011, or 100.

This example is both bad and inefficient. It is bad, because AAABAAB can be
encoded either as the four codes AAA, B, AA, B or as the three codes AA, ABA,
AB; encoding is not unique and may require several passes to determine the shortest
code. This happens because our five substrings don’t satisfy the prefix property. This
example is inefficient because only five of the eight possible 3-bit codes are used. An n-
bit Tunstall code should use all 2" codes. Another point is that our codes were selected
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without considering the relative frequencies of the two symbols, and as a result we cannot
be certain that this is the best code for our alphabet.

Thus, an algorithm is needed to construct the best n-bit Tunstall code for a given
alphabet of N symbols, and such an algorithm is given in [Tunstall 67]. Given an
alphabet of N symbols, we start with a code table that consists of the symbols. We
then iterate as long as the size of the code table is less than or equal to 2™ (the number
of n-bit codes). Each iteration performs the following steps:

»  Select the symbol with largest probability in the table. Call it S.

»  Remove S and include the N substrings Sz where x goes over all the N symbols.
This step increases the table size by N — 1 symbols (some of them may be substrings).
Thus, after iteration k, the table size will be N + k(N — 1) elements.

» N+ (K+1)(N—1) <27 perform another iteration (iteration k + 1).

It is easy to see that the elements (symbols and substrings) of the table satisfy the
prefix property and thus ensure unique encodability. If the first iteration adds element
AB to the table, it must have removed element A. Thus, A, the prefix of AB, is not
a code. If the next iteration creates element ABR, then it has removed element AB,
so AB is not a prefix of ABR. This construction also minimizes the average number
of bits per alphabet symbol because of the requirement that each iteration select the
element (or an element) of maximum probability. This requirement is similar to the way
a Huffman code is constructed, and we illustrate it by an example.

C
07 (9 01 049 gy 0.07 0.343 (5 98 0.049
(a) (b) (c)

Figure 1.3: Tunstall Code Example.

Given an alphabet with the three symbols A, B, and C (N = 3), with probabilities
0.7, 0.2, and 0.1, respectively, we decide to construct a set of 3-bit Tunstall codes (thus,
n = 3). We start our code table as a tree with a root and three children (Figure 1.3a).
In the first iteration, we select A and turn it into the root of a subtree with children AA,
AB, and AC with probabilities 0.49, 0.14, and 0.07, respectively (Figure 1.3b). The
largest probability in the tree is that of node AA, so the second iteration converts it to
the root of a subtree with nodes AAA, AAB, and AAC with probabilities 0.343, 0.098,
and 0.049, respectively (Figure 1.3¢). After each iteration we count the number of leaves
of the tree and compare it to 23 = 8. After the second iteration there are seven leaves in
the tree, so the loop stops. Seven 3-bit codes are arbitrarily assigned to elements AAA,
AAB, AAC, AB, AC, B, and C. The eighth available code should be assigned to a
substring that has the highest probability and also satisfies the prefix property.



1.7 Schalkwijk’s Coding 23
The average bit length of this code is easily computed as

3
3(0.343 + 0.098 4 0.049) + 2(0.14 4+ 0.07) + 0.2+ 0.1

= 1.37 bits/symbol.

In general, let p; and [; be the probability and length of tree node 4. If there are m nodes
in the tree, the average bit length of the Tunstall code is n/ Y ;- p;l;. The entropy of
our alphabet is —(0.7 x log, 0.7 4+ 0.2 X log, 0.2 + 0.1 x log, 0.1) = 1.156, so the Tunstall
codes do not provide the best compression.

The tree of Figure 1.3 is referred to as a parse tree, not a code tree. It is complete
in the sense that every interior node has N children. Notice that the total number
of nodes of this tree is 3 x 2 + 1 and in general a(N — 1) + 1. A parse tree defines
a set of substrings over the alphabet (seven substrings in our example) such that any
string of symbols from the alphabet can be broken up (subdivided) into these substrings
(except that the last part may be only a prefix of such a substring) in one way only. The
subdivision is unique because the set of substrings defined by the parse tree is proper,
i.e., no substring is a prefix of another substring.

An important property of the Tunstall codes is their reliability. If one bit becomes
corrupt, only one code will get bad. Normally, variable-length codes are not robust. One
bad bit may corrupt the decoding of the remainder of a long sequence of such codes.
It is possible to incorporate error-control codes in a string of variable-length codes, but
this increases its size and reduces compression.

Section 1.13.1 illustrates how a combination of the Tunstall algorithm with Huffman
coding can improve compression in a two-step, dual tree process.

A major downside of the Tunstall code is that both encoder and decoder have to
store the complete code (the set of substrings of the parse tree).

There are 10 types of people in this world: those who understand binary and those
who don’t.

—Author unknown

1.7 Schalkwijk’s Coding

One of the many contributions of Isaac Newton to mathematics is the well-known bino-

mial theorem. It states
n n . .
b n — ’Lb’n,—l
(a+Db) E (Z,)a ,

=0

(1) = m=

is pronounced “n over ¢’ and is referred to as a binomial coefficient.

where the term
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1 10 45 120 210 252 210 120 45 10 1
1 11 556 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 7156 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Figure 1.4: Pascal Triangle.

Blaise Pascal (Section 2.23), a contemporary of Newton, discovered an elegant way
to compute these coefficients without the lengthy calculations of factorials, multiplica-
tions, and divisions. He conceived the famous triangle that now bears his name (Fig-
ure 1.4) and showed that the general element of this triangle is a binomial coefficient.

Quand on voit le style naturel, on est tout etonne et ravi, car on s’attendait de
voir un auteur, et on trouve un homme. (When we see a natural style, we are quite
surprised and delighted, for we expected to see an author and we find a man.)

—DBlaise Pascal, Pensées (1670)

The Pascal triangle is an infinite triangular matrix that’s constructed from the
edges inwards. First fill the left and right edges with 1’s, then compute each interior
element as the sum of the two elements directly above it. The construction is simple
and it is trivial to derive an explicit expression for the general element of the triangle
and show that it is a binomial coefficient. Number the rows from 0 starting at the top,
and number the columns from 0 starting on the left. A general element is denoted by
(’) Now observe that the top two rows (corresponding to ¢ = 0 and i = 1) counsist of
1’s and that every other row can be obtained as the sum of its predecessor and a shifted
version of its predecessor. For example,

+
NG
DD W W
=W =
I

This shows that the elements of the triangle satisfy

(;) = (;iDJr(Z;l) i=23,..., j=1,....(i—1).
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From this, it is easy to obtain the explicit expression

G)=G)+(5)

(i—1)! n (t—1)!

T G-Di—5) -1 )
_ -1 (i)t
A=) =)
7!

And this is Newton’s binomial coefficient (;)

The Pascal triangle has many interesting and unexpected properties, some of which
are listed here.

s The sum of the elements of row i is 2°.

»  If the second element of a row is a prime number, all the elements of the row (except
the 1’s) are divisible by it. For example, the elements 7, 21, and 35 of row 7 are divisible
by 7.

m  Select any diagonal and any number of consecutive elements on it. Their sum will
equal the number on the row below the end of the selection and off the selected diagonal.
For example, 1+ 6 + 21 4 56 = 84.

m  Select row 7, convert its elements 1, 7, 21, 35, 35, 21, 7, and 1 to the single number
19487171 by concatenating the elements, except that a multidigit element is first carried
over, such that 1, 7, 21, 35,...become 1(7+2)(14+3)(5+3) ... = 1948.... This number
equals 117 and this magic-11 property holds for any row.

m  The third column from the right consists of the triangular numbers 1, 3, 6, 10,....

m  Select all the odd numbers on the triangle and fill them with black. The result is
the Sierpinski triangle (a well-known fractal).

Other unusual properties can be found in the vast literature that exists on the
Pascal triangle. The following is a quotation from Donald Knuth:

“There are so many relations in Pascal’s triangle, that when someone finds a new
identity, there aren’t many people who get excited about it anymore, except the discov-
erer.”

The Pascal triangle is the basis of the unusual coding scheme described in
[Schalkwijk 72]. This method starts by considering all the finite bit strings of length n
that have exactly w 1’s. The set of these strings is denoted by T'(n,w). If a string ¢
consists of bits t; through ¢,,, then we define weights w; through w,, as the partial sums

n
W = Z ti.
i=k
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Thus, if t = 010100, then wy = wy = 2, w3 = wg = 1, and ws = wg = 0. Notice that w;
always equals w.
We now define, somewhat arbitrarily, a ranking i(t) on the () strings in set T'(n, w)

i(t) = Zn:tk (nu;k>

k=1

by

(The binomial coefficient (;) is defined only for i > j, so we set it to 0 when ¢ < n.) The
rank of ¢ = 010100 becomes

-2 —4
0—1—1(62 >+0+1<61 >+0+0:6+2:8.

It can be shown that the rank of a string ¢ in set T'(n,w) is between 0 and () — 1.
The following table lists the ranking for the (g) = 15 strings of set T(6, 2).
0 000011 3 001001 6 010001 9 011000 12 100100
1 000101 4 001010 7 010010 10 100001 13 101000
2 000110 5 001100 & 010100 11 100010 14 110000

The first version of the Schalkwijk coding algorithm is not general. It is restricted to
data symbols that are elements ¢ of T'(n, w). We assume that both encoder and decoder
know the values of n and w. The method employs the Pascal triangle to determine the
rank i(t) of each string ¢, and this rank becomes the code of ¢. The maximum value
of the rank is (') — 1, so it can be expressed in [log, ()] bits. Thus, this method
compresses each n-bit string (of which w bits are 1’s) to [log, ()] bits.

Consider a source of bits that emits a 0 with probability ¢ and a 1 with probability
p =1 —q. The entropy of this source is H(p) = —plogysp — (1 — p) logy(1 — p). In our
strings, p = w/n, so the compression performance of this method is measured by the

ratio
[logy (:}))]
n

and it can be shown that this ratio approaches H(w/n) when n becomes very large.
(The proof employs the famous Stirling formula n! ~ v2mnn"e™".)

Figure 1.5a illustrates the operation of both encoder and decoder. Both know the
values of n and w and they construct in the Pascal triangle a coordinate system tilted
as shown in the figure and with its origin at element w of row n of the triangle.

As an example, suppose that (n,w) = (6,2). This puts the origin at the element 15
as shown in part (a) of the figure. The encoder starts at the origin, reads bits from the
input string, and moves one step in the x direction for each 0 read and one step in the
y direction for each 1 read. In addition, before moving in the y direction, the encoder
saves the next triangle element in the x direction (the one it will not go to). Thus, given
the string 010100, the encoder starts at the origin (15), moves to 10, 4, 3, 1, 1, and 1,
while saving the values 6 (before it moves from 10 to 4) and 2 (before it moves from 3
to 1). The sum 6 + 2 = 8 = 10002 is the 4-bit rank of the input string and it becomes
the encoder’s output.
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Figure 1.5: First Version.

The decoder also knows the values of n and w, so it constructs the same coordinate
system in the triangle and starts at the origin. Given the 4-bit input 1000, = 8, the
decoder compares it to the next x value 10, and finds that 8 < 10. It therefore moves
in the z direction, to 10, and emits a 0. The input 8 is compared to the next = value
6, but it is not less than 6. The decoder responds by subtracting 8 — 6 = 2, moving in
the y direction, to 4, and emitting a 1. The current input, 2, is compared to the next x
value 3, and is found to be smaller. The decoder therefore moves in the = direction, to
3, and emits a 0. When the input 2 is compared to the next z value 2, it is not smaller,
so the decoder: (1) subtracts 2 —2 =0, (2) moves in the y direction to 1, and (3) emits
a 1. The decoder’s input is now 0, so the decoder finds it smaller than the values on
the = axis. It therefore keeps moving in the = direction, emitting two more zeros until
it reaches the top of the triangle.

A similar variant is shown in Figure 1.5b. The encoder always starts at the apex
of the triangle, moves in the —z direction for each 0 and in the —y direction for each
1, where it also records the value of the next element in the —x direction. Thus, the
two steps in the —y direction in the figure record the values 1 and 3, whose sum 4
becomes the encoded value of string 010100. The decoder starts at 15 and proceeds in
the opposite direction toward the apex. It is not hard to see that it ends up decoding
the string 001010, which is why the decoder’s output in this variant has to be reversed
before it is used.

This version of Schalkwijk coding is restricted to certain bit strings, and is also
block-to-block coding. Each block of n bits is replaced by a block of [log, (Z)ﬂ bits.
The next version is similar, but is variable-to-block coding. We again assume a source
of bits that emits a 0 with probability ¢ and a 1 with probability p =1 — q. A string of
n bits from this source may often have close to pn 1’s and gn zeros, but may sometimes
have different numbers of zeros and 1’s. We select a convenient value for n, a value that
is as large as possible and where both pn and gn are integers or very close to integers.
If p = 1/3, for example, then n = 12 may make sense, because it results in np = 4 and
ng = 8. We again employ the Pascal triangle and take a rectangular block of (pn + 1)
rows and (gn + 1) columns such that the top of the triangle will be at the top-right
corner of the rectangle (Figure 1.6).

As before, we start at the bottom-left corner of the array and read bits from the
source. For each 0 we move a step in the x direction and for each 1 we move in the y
direction. If the next n bits have exactly pn 1’s, we will end up at point “A)” the
top-right corner of the array, and encode n bits as before. If the first n bits happen to
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Figure 1.6: Second Version.

have more than pn 1’s, then the top of the array will be reached (after we have read
np 1’s) early, say at point “B,” before we have read n bits. We cannot read any more
source bits, because any 1 would take us outside the array, so we append several dummy
zeros to what we have read, to end up with n bits (of which np are 1’s). This is encoded
as before. Notice that the decoder can mimic this operation. It operates as before, but
stops decoding when it reaches the top boundary. If the first n bits happen to have
many zeros, the encoder will end up at the right boundary of the array, say, at point
“C,” after it has read gn zeros but before it has read n bits. In such a case, the encoder
appends several 1’s, to end up with exactly n bits (of which precisely pn are 1’s), and
encodes as before. The decoder can mimic this operation by simply stopping when it
reaches the right boundary.

Any string that has too many or too few 1’s degrades the compression, because it
encodes fewer than n bits in the same [log, (pﬁl)] bits. Thus, the method may not be
very effective, but it is an example of a variable-to-block encoding.

The developer of this method points out that the method can be modified to employ
the Pascal triangle for block-to-variable coding. The value of n is determined and it
remains fixed. Blocks of n bits are encoded and each block is preceded by the number of
1’s it contains. If the block contains w 1’s, it is encoded by the appropriate part of the
Pascal triangle. Thus, each block of n bits may be encoded by a different part of
the triangle, thereby producing a different-length code. The decoder can still work in
lockstep with the encoder, because it first reads the number w of 1’s in a block. Knowing
n and w tells it what part of the triangle to use and how many bits of encoding to read.
It has been pointed out that this variant is similar to the method proposed by [Lynch 66]
and [Davisson 66]. This variant has also been extended by [Lawrence 77], whose block-
to-variable coding scheme is based on a Pascal triangle where the boundary points are
defined in a special way, based on the choice of a parameter S.

1.8 Tjalkens—Willems V-to-B Coding

The little-known variable-to-block coding scheme presented in this section is due to
[Tjalkens and Willems 92] and is an extension of earlier work described in [Lawrence 77].
Like the Schalkwijk’s codes of Section 1.7 and the Lawrence algorithm, this scheme
employs the useful properties of the Pascal triangle. The method is based on the choice
of a positive integer parameter C'. Once a value for C has been selected, the authors
show how to construct a set L of M variable-length bitstrings that satisfy the following:
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1. Set L is complete. Given any infinite bitstring (in practice, a string of M or
more bits), L contains a prefix of the string.
2. Set L is proper. No segment in the set is a prefix of another segment.

Once L has been constructed, it is kept in lexicographically-sorted order, so each
string in L has an index between 0 and M — 1. The input to be encoded is a long
bitstring. It is broken up by the encoder into segments of various lengths that are
members of L. Each segment is encoded by replacing it with its index in L. Note that
the index is a (log, M)-bit number. Thus, if M = 256, each segment is encoded in eight
bits. The main task is to construct set L in such a way that the encoder will be able
to read the input bit by bit, stop when it has read a bit pattern that is a string in L,
and determine the code of the string (its index in L). The theory behind this method is
complex, so only the individual steps and tests are summarized here.

Given a string s of a zeros and b 1’s, we define the function

Q@y:m+b+n<“:ﬂ.

(The authors show that 1/@ is the probability of string s.) We denote by s_; the string
s without its last (rightmost) bit. String s is included in set L if it satisfies

Q(s_1) < C < Q(s). (1.4)

The authors selected C' = 82 (because this results in the convenient size M = 256).
Once C' is known, it is easy to decide whether a given string s with a zeros and b 1’s
is a member of set L (i.e., whether s satisfies Equation (1.4)). If s is in L, then point
(a,b) in the Pascal triangle (i.e., element b of row a, where row and column numbering
starts at 0) is considered a boundary point. Figure 1.7a shows the boundary points
(underlined) for C' = 82.

1 256
/ /
11 128 128
/ /
1" 2 1 106 22 106
\ \
1/331 /111195
1 4 6 4 1 88 7 4 7 88
/ /
1 5 10 10 5 1 83 5 2 2 5 83
/ /
1 6 1520 15 6 1 7994 1 1 1 4 79
\ \
17 21 21 7 1 76 [3] 1 1 3 76
1 8 28 28 8 1 74 2 1 1 2 74
1 9 36 36 9 1 73 1 1 1 1 73
1 10

Figure 1.7: (a) Boundary Points. (b) Coding Array.
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The inner parts of the triangle are not used in this method and can be removed.
Also, The lowest boundary points are located on row 81 and lower parts of the triangle
are not used. If string s is in set L, then we can start at the apex of the triangle, move in
the a direction for each 0 and in the b direction for each 1 in s, and end up at a boundary
point. The figure illustrates this walk for the string 0010001, where the boundary point
reached is 21.

Setting up the partial Pascal triangle of Figure 1.7a is just the first step. The second
step is to convert this triangle to a coding triangle M (a,b) of the same size, where each
walk for a string s can be used to determine the index of s in set L and thus its code.
The authors show that element M (a, b) of this triangle must equal the number of distinct
ways to reach a boundary point after processing a zeros and b 1’s (i.e., after moving a
steps in the a direction and b steps in the b direction). Triangle M (a,b) is constructed
according to

M(a,b) = L, if (a,b) is a boundary point,
T\ M(a+1,b) + M(a,b+ 1), otherwise.

The coding array for C' = 82 (constructed from the bottom up) is shown in
Figure 1.7b. Notice that its apex, M(0,0), equals the total number of strings in L.
Once this triangle is available, both encoding and decoding are simple and are listed
in Figure 1.8a,b. The former inputs individual bits and moves in M(a,b) in the a or b
directions according to the inputs. The end of the current input string is signalled when
a node with a 1 is reached in the coding triangle. For each move in the b direction, the
next element in the a direction (the one that will not be reached) is added to the index.
At the end, the index is the code of the current string. Figure 1.7b shows the moves for
0010001 and how the nodes 95 and 3 are selected and added to become code 98. The
decoder starts with the code of a string in variable index. It compares index to the sum
(I +M(a+1,b)) and moves in the a or b directions according to the result, generating
one output bit as it moves. Decoding is complete when the decoder reaches a node with
al.

index:=0; a:=0; b:=0; I1:=0; a:=0; b:=0;

while M(a,b) #1 do while M(a,b) #1 do
if next_input =0 if index < (I + M(a +1,b))
then a:=a+1 then next_output:=0; a:=a+l;
else index:=index+M (a + 1,b); else next_output:=1;

b:=b+1 I:=1+M(a+1,b); b:=b+1

endif endif

endwhile endwhile

Figure 1.8: (a) Encoding and (b) Decoding.

Extraordinary how mathematics help you....
—Samuel Beckett, Molloy (1951)
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1.9 Phased-In Codes

Many of the prefix codes described here were developed for the compression of specific
types of data. These codes normally range from very short to indefinitely long, and they
are suitable for the compression of data where individual symbols have small and large
probabilities. Data where symbols have equal probabilities cannot be compressed by
VLCs and may be assigned fixed-length codes. The codes of this section (also called
phased-in binary codes, see Appendix A-2 in [Bell et al. 90]) constitute a compromise.
A set of phased-in codes consists of codes of two lengths and may contribute a little to
the compression of data where symbols have equal or almost equal probabilities.

Here is an example for the case n = 24. Given a set of 24 symbols a¢ through
as3, we first determine that the largest power of 2 in the interval [0, 23] is 16. The first
2% = 16 symbols a; are assigned the codes i + 16. These codes are the 5-bit numbers
16 = 100004 through 31 = 111115. The remaining symbols a6 through as3 are assigned
codes ¢ — 16, resulting in the 4-bit numbers 0 = 0000 through 7 = 01115. The final
result is a set of the sixteen 5-bit codes 10000 through 11111, followed by the eight 4-bit
codes 0000 through 0111.

Decoding is straightforward. First read four bits into T'. If T' < 7, then the code is
the 4-bit T'; otherwise, read the next bit v and compute the 5-bit code 2T + u.

In general, we assume an alphabet that consists of the n symbols ag, a1, ..., a,_1.
We select the integer m that satisfies 2™ < n < 2™+1, The first 2™ symbols ag through
agm 1 are encoded as the (m 4+ 1)-bit numbers i + 2™. This results in codes 2™ through
2m+1 _ 1. The remaining n — 2™ symbols asm through a,_; are encoded as the m-bit
numbers ¢ — 2”*. This results in codes 0 through n — 2™.

To decode, read the first m bits into T'. If T' < n — 2™, then the code is the m-bit
T; otherwise, read the next bit u and compute the (m + 1)-bit code 2T + w.

The phased-in codes are closely related to the minimal binary code of Section 2.12.

The efficiency of phased-in codes is easy to estimate. The first 2™ symbols are
encoded in m + 1 bits each and the remaining n — 2™ symbols are encoded in m bits
each. The average number of bits for each of the n symbols is therefore [2™(m + 1) +
(n —2™)m]/n = (2™ /n) + m. Fixed-length (block) codes for the n symbols are m + 1
bits each, so the quantity [(2™/n) + m]/(m + 1) is a good measure of the efficiency of
this code. For n = 2™, this measure equals 1, while for other values of n it is less than
1, as illustrated in Figure 1.9.

One application of these codes is as pointers to a table. Given a table of 1000
entries, pointers to the table are in the interval [0,999] and are normally ten bits long,
but not all the 1024 10-bit values are needed. If phased-in codes are used to encode the
pointers, they become either 10 or nine bits each, resulting in a small compression of the
set of pointers. It is obvious that 2° < 1000 < 20, so m = 9, resulting in the 512 10-bit
codes 0 4 2% = 512 through 511 + 29 = 1023 and the 488 9-bit codes 512 — 2° = 0 to
999 — 29 = 487. The average length of a pointer is now (512 x 104488 x 9)/1000 = 9.512
bits.

The application of phased-in codes in this case is effective because the number of
data items is close to 2™+!. In cases where the table size is close to 2™, however, the
phased-in codes are not that efficient. A simple example is a table with 2° + 1 = 513
entries. The value of m is again 9, and the first 512 phased-in codes are the 10-bit
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Figure 1.9: Efficiency of Phased-In Codes.

g=Table[Plot[((2"m/n)+m)/(m+1), {n,2"m,2" (m+1)-0.99}], {m,0,8}];
Show [g]

Code for Figure 1.9.

numbers 0 4 29 = 512 through 511 + 2? = 1023. The 513th code is the 9-bit number
512 — 29 = 0. The average code size is now (512 x 10 + 1 x 9)/513 ~ 9.99 bits.

See [seul.org 06] for a Mathematica notebook to construct phased-in codes.

It is also possible to construct suffix phased-in codes, where the leftmost bit of some
codes is removed if it is a 0 and if its removal does not create any ambiguity. Table 1.10
(where the removed bits are in italics) illustrates an example for the first 24 nonnegative
integers. The fixed-sized representation of these integers requires five bits, but each of
the eight integers 8 through 15 can be represented by only four bits because 5-bit codes
can represent 32 symbols and we have only 24 symbols. A simple check verifies that, for
example, coding the integer 8 as 1000 instead of 01000 does not introduce any ambiguity,
because none of the other 23 codes ends with 1000. One-third of the codewords in this
example are one bit shorter, but if we consider only the 17 integers from 0 to 16, about
half will require four bits instead of five. The efficiency of this code depends on where
n (the number of symbols) is located in the interval [2™,2mF1 — 1).

00000 00001 00010 00011 00100 00101 00110 00111
01000 01001 01010 01011 01100 01101 01110 01111
10000 10001 10010 10011 10100 10101 10110 10111

Table 1.10: Suffix Phased-In Codes.

The suffix phased-in codes are suffix codes (if ¢ has been selected as a codeword,
no other codeword will end with ¢). Suffix codes can be considered the complements of
prefix codes and are also mentioned in Section 3.5.
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1.10 Redundancy Feedback (RF) Coding

The interesting and original method of redundancy feedback (RF) coding is the brain-
child of Eduardo Enrique Gonzalez Rodriguez who hasn’t published it formally. As a
result, information about it is hard to find. At the time of writing (early 2007), there is
a discussion in file new-entropy-coding-algorithm-312899.html at web site
http://archives.devshed.com/forums/compression-130/ and some information (and
source code) can also be obtained from this author.

The method employs phased-in codes, but is different from other entropy coders.
It may perhaps be compared with static arithmetic coding. Most entropy coders assign
variable-length codes to data symbols such that the length of the code for a symbol
is inversely proportional to the symbol’s frequency of occurrence. The RF method, in
contrast, starts by assigning several fixed-length (block) codes to each symbol according
to its probability. The method then associates a phased-in code (that the developer terms
“redundant information”) with each block codeword. Encoding is done in reverse, from
the end of the input stream. Each symbol is replaced by one of its block codes B in such
a way that the phased-in code associated with B is identical to some bits at the start (the
leftmost part) of the compressed stream. Those bits are deleted from the compressed
stream (which generates compression) and B is prepended to it. For example, if the
current block code is 010111 and the compressed stream is 0111]0001010. .., then the
result of prepending the code and removing identical bits is 01|0001010. . ..

We start with an illustrative example. Given the four symbols A, B, C, and D, with
probabilities 37.5%, 25%, 12.5%, and 25%, respectively, we assign each symbol several
block codes according to its probability. The total number of codes must be a power
of 2, so A is assigned three codes, each of B and D gets two codes, and C' becomes
the “owner” of one code, for a total of eight codes. Naturally, the codes are the 3-bit
numbers 0 through 7. Table 1.11a lists the eight codes and their redundant information
(the associated phased-in codes). Thus, e.g., the three codes of A are associated with the
phased-in codes 0, 10, and 11, because these are the codes for n = 3. (Section 1.9 shows
that we have to look for the integer m that satisfies 2™ < n < 2™+, Thus, for n = 3,
m is 1. The first 2 = 2 symbols are assigned the 2-bit numbers 0+ 2 and 1+ 2 and the
remaining 3 — 2 symbol is assigned the 1-bit number ¢ — 2™ = 2 — 2 = 0.) Similarly,
the two phased-in codes associated with B are 0 and 1. Symbol D is associated with
the same two codes, and the single block code 5 of C has no associated phased-in codes
because there are no phased-in codes for a set of one symbol. Table 1.11b is constructed
similarly and lists 16 4-bit block codes and their associated phased-in codes for the three
symbols A, B, and C' with probabilities 0.5, 0.2, and 0.2, respectively.

First, a few words on how to determine the number of codes per symbol from the
number n of symbols and their frequencies f;. Given an input string of F' symbols
(from an alphabet of n symbols) such that symbol i appears f; times (so that > f; =
F), we first determine the number of codes. This is simply the power m of 2 that
satisfies 271 < n < 2™, We now multiply each f; by 2™/F. The new sum satisfies
S fi x2m/F = 2™, Next, we round each term of this sum to the nearest integer, and
if any is rounded down to zero, we set it to 1. Finally, if the sum of these integers is
slightly different from 2™, we increment (or decrement) each of the largest ones by 1
until the sum equals 2.
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Code Symbol Redundant Info Code Symbol Redundant Info
0 A 0/3—=0 0 0000 A 0/10 — 000
1 A 1/3 =10 1 0001 A 1/10 — 001
2 A 2/3 =11 2 0010 A 2/10 — 010
3 B 0/2—=0 30011 A 3/10 — 011
4 B 1/2—1 4 0100 A 4/10 — 100
5 C 0/1— — 50101 A 5/10 — 101
6 D 0/2—0 6 0110 A 6/10 — 1100
7 D 1/2 -1 70111 A 7/10 — 1101

8 1000 A 8/10 — 1110
91001 A 8/10 — 1111

10 1010 B 0/3—=0

11 1011 B 1/3 =10

12 1100 B 2/3 =11

13 1101 C 0/3—=0

14 1110 C 1/3 — 10

15 1111 C 2/3 —» 11

(a) (b)

Table 1.11: Eight and 16 RF Codes.

As an example, consider a 6-symbol alphabet and an input string of F' = 47 symbols,
where the six symbols appear 17, 6, 3, 12, 1, and 8 times. We first determine that
22 < 6 < 23, s0 we need 8 codes. Multiplying 17 x8/47 = 2.89 — 3, 6 x8/47 = 1.02 — 1,
3x8/47 =0.51 — 1,12x8/47 = 2.04 — 2, 1x8/47 = 0.17 — 0, and 8x8/47 = 1.36 — 1.
The last step is to increase the 0 to 1, and make sure the sum is 8 by decrementing the
largest count, 3, to 2.

The codes of Table 1.11b are now used to illustrate RF encoding. Assume that the
input is the string AABCA. It is encoded from end to start. The last symbol A is easy
to encode as we can use any of its block codes. We therefore select 0000. The next
symbol, C, has three block codes, and we select 13 = 1101. The associated phased-in
code is 0, so we start with 0000, delete the leftmost 0, and prepend 1101, to end up with
1101]000. The next symbol is B and we select block code 12 = 1100 with associated
phased-in code 11. Encoding is done by deleting the leftmost 11 and prepending 1100,
to end up with 1100/01|000. To encode the next A, we select block code 6 = 0110 with
associated phased-in code 1100. Again, we delete 1100 and prepend 0110 to end up with
0110]|01]000. Finally, the last (i.e., leftmost) symbol A is reached, for which we select
block code 3 = 0011 (with associated phased-in code 011) and encode by deleting 011
and prepending 0011. The compressed stream is 0011|0]|01]000.

The RF encoding principle is simple. Out of all the block codes assigned to the
current symbol, we select the one whose associated phased-in code is identical to the
prefix of the compressed stream. This results in the deletion of the greatest number of
bits and thus in maximum compression.

Decoding is the opposite of encoding. The decoder has access to the table of
block codes and their associated codes (or it starts from the symbols’ probabilities and
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constructs the table as the encoder does). The compressed stream is 0011001000 and
the first code is the leftmost four bits 0011 = 3 — A. The first decoded symbol is A and
the decoder deletes the 0011 and prepends 011 (the phased-in code associated with 3)
to end up with 011001000. The rest of the decoding is straightforward.

Experiments with this method verify that its performance is generally almost as
good as Huffman coding. The main advantages of RF coding are as follows:

1. It works well with a 2-symbol alphabet. We know that Huffman coding fails in
this situation, even when the probabilities of the symbols are skewed, because it simply
assigns the two 1-bit codes to the symbols. In contrast, RF coding assigns the common
symbol many (perhaps seven or 15) codes, while the rare symbol is assigned only one or
two codes, thereby producing compression even in such a case.

2. The version of RF presented earlier is static. The probabilities of the symbols
have to be known in advance in order for this version to work properly. It is possible to
extend this version to a simple dynamic RF coding, where a buffer holds the most-recent
symbols and code assignment is constantly modified. This version is described below.

3. It is possible to replace the phased-in codes with a simple form of arithmetic
coding. This slows down both encoding and decoding, but results in better compression.

Dynamic RF coding is slower than the static version above, but is more efficient.
Assuming that the probabilities of the data symbols are unknown in advance, this version
of the basic RF scheme is based on a long sliding buffer. The buffer should be long,
perhaps 2'5 symbols or longer, in order to reflect the true frequencies of the symbols.
A common symbol will tend to appear many times in the buffer and will therefore be
assigned many codes. For example, given the alphabet A, B, C, D, and E, with probabilities
60%, 10%, 10%, 15%, and 5%, respectively, the buffer may, at a certain point in the
encoding, hold the following

vaw | o |p|ala|B|a|c|ala|p|ajalB|ajalalc|alalp|alc|alE|alalalplalalc|alalp|ala) coded
< |36|35|34|33|32|31|30|20|28|27|26|25|24|23|22|21|20[19]18|17|16]| 15| 14]13[12[11]10|0]8|7|6|5|4 3| 2[1| <

On the left, there is raw (unencoded) text and on the right there is text that has
already been encoded. We can imagine the text being stationary and the buffer sliding to
the left. If the buffer is long enough, the text inside it will reflect the true probabilities of
the symbols and each symbol will have a number of codes proportional to its probability.
At any time, the symbol immediately to the right of the buffer is encoded by selecting
one of its codes in the buffer, and then moving the buffer one symbol to the left. If the
buffer happens to contain no occurrences of the symbol to be encoded, then the code
of all zeros is selected (which is why the codes in the buffer start at 1) and is output,
followed by the raw (normally ASCII) code of the symbol. Notice that sliding the buffer
modifies the codes of the symbols, but the decoder can do this in lockstep with the
encoder. Once a code has been selected for a symbol, the code is prepended to the
compressed stream after its associated phased-in code is used to delete identical bits, as
in the static version.

We illustrate this version with a 4-symbol alphabet and the string ABBACBBBAADA.
We assume a buffer with seven positions (so the codes are between 1 and 7) and
place the buffer initially such that the rightmost A is immediately to its right, thus
ABBA [CBBBAAD] A.
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The initial buffer position and codes (both the 3-bit RF codes and the associated
phased-in codes) are shown here. Symbol A is immediately to the right of the buffer and
it can be encoded as either 2 or 3. We arbitrarily select 2, ending up with a compressed
stream of 010.

ABBA|{C B B B A A D
7 6 5 4 3 2 1
111 110 101 100 011 010 001
1:- 3:2 3:1 3:0 2:1 2:0 1:-
- 11 10 0 1 0 -

The buffer is slid, as shown below, thereby changing all the codes. This is why the
dynamic version is slow. Symbol D is now outside the buffer and must be encoded as the
pair (000, D) because there are no occurrences of D inside the buffer. The compressed
stream becomes 000: 01000100|010.

ABB|A C B B B A A|DA
7 6 5 4 3 2 1
111 110 101 100 011 010 001

3:2 1:- 3:2 3:1 3:0 3:1 3:0
11 - 11 10 0 10 0

Now comes another A that can be encoded as either 1 or 6. Selecting the 1 also
selects its associated phased-in code 0, so the leftmost 0 is deleted from the compressed
stream and 001 is prepended. The result is 001|00: 01000100|010.

AB|B A C B B B A|ADA
7 6 65 4 3 2 1
111 110 101

100 011 010 001
4:3 2:1 1:- 4:2 4:1 4:0 2:0
11 1 - 10 01 00 0

The next symbol to be encoded is the third A from the right. The only avail-
able code is 5, which has no associated phased-in code. The output therefore becomes
101]001|00: 01000100|010.

Al/B B A C B B B
7 6 65 4 3 2 1
111 110 101

A A DA

100 011 010 001
5:4 5:3 1:- 1:- b5:2 5:1 5:0
111 110 - - 10 01 00

Next in line is the B. Four codes are available, of which the best choice is 5, with
associated phased-in code 10. The string 101|1]001|00: 01000100|010 is the current out-
put.

A B B A C B B
7 6 5 4 3 2 1
111 110 101 100 011 010 001
2:1 4:3 4:2 2:0 1:- 4:1 4:0

B AADA

1 11 10 0 - 01 00
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Encoding continues in this way even though the buffer is now only partially full.
The next B is encoded with only three Bs in the buffer, and with each symbol encoded,
fewer symbols remain in the buffer. Each time a symbol s is encoded that has no copies
left in the buffer, it is encoded as a pair of code 000 followed by the ASCII code of
s. As the buffer gradually empties, more and more pairs are prepended to the output,
thereby degrading the compression ratio. The last symbol (which is encoded with an
empty buffer) is always encoded as a pair.

Thus, the decoder starts with an empty buffer, and reads the first code (000) which
is followed by the ASCII code of the first (leftmost) symbol. That symbol is shifted into
the buffer, and decoding continues as the reverse of encoding.

1.11 Recursive Phased-In Codes

The recursive phased-in codes were introduced in [Acharya and J4J4 95] and [Acharya
and J4J4 96] as an enhancement to the well-known LZW (Lempel Ziv Welch) compres-
sion algorithm [Salomon 06]. These codes are easily explained in terms of complete
binary trees, although their practical construction may be simpler with the help of cer-
tain recursive formulas conceived by Steven Pigeon.

The discussion in Section 2.18 shows that any positive integer N can be written
uniquely as the sum of certain powers of 2. Thus, for example, 45 is the sum 2° 4 23 +
22 + 29, In general, we can write N = Zle 2% where a; > as > --- > as > 0 and
s > 1. For N = 45, for example, these values are s = 4 and a; = 5, as = 3, az = 2,
and a4 = 0. Once a value for N has been selected and the values of all its powers
a; determined, a set of N variable-length recursive phased-in codes can be constructed
from the tree shown in Figure 1.12. For each power a;, this tree has a subtree that is a
complete binary tree of height a;. The individual subtrees are connected to the root by
2s — 2 edges labeled 0 or 1 as shown in the figure.

complete in: as
binary tree ’ complete

Figure 1.12: A Tree for Recursive Phased-In Codes.

The tree for N = 45 is shown in Figure 1.13. It is obvious that the complete binary
tree for a; has a; leaves and the entire tree therefore has a total of IV leaf nodes. The
codes are assigned by sliding down the tree from the root to each leaf, appending a 0
to the code each time we slide to the left and a 1 each time we slide to the right. Some
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codes are also shown in the figure. Thus, the 45 recursive phased-in codes for N = 45
are divided into the four sets Oxzxxz, 10xzx, 110xx, and 111, where the z’s stand for
bits. The first set consists of the 32 5-bit combinations prepended by a 0, the second set
includes eight 5-bit codes that start with 10, the third set has four codes, and the last
set consists of the single code 111. As we scan the leaves of each subtree from left to
right, we find that the codewords in each set are in ascending order. Even the codewords
in different sets appear sorted, when scanned from left to right, if we append enough
zeros to each so they all become six bits long. The codes are prefix codes, because, for
example, once a code of the form Oxzzzx has been assigned, no other codes will start
with 0.

A AN AN AN AN A NNANVANEEE LU

A A A A 10101
AAAA AAAA AAAA AAAA
011110

Figure 1.13: A Tree for N = 45.

In practice, these codes can be constructed in two steps, one trivial and the other
one simple, as follows:

1. (This step is trivial.) Given a positive integer N, determine its powers a;. Given,
for example, 45 = ...000101101 we first locate its leftmost 1. The position of this 1
(its distance from the right end) is s. We then scan the bits from right to left while
decrementing an index 4 from s to 1. Each 1 found designates a power a;.

2. There is no need to actually construct any binary trees. We build the set of
codes for a; by starting with the prefix 0 and appending to it all the a;-bit numbers.
The set of codes for ay is similarly built by starting with the prefix 10 and appending
to it all the as-bit numbers.

In his PhD thesis [Pigeon 01b], Steven Pigeon proposes a recursive formula as an
alternative to the steps above. Following Elias (Section 2.4), we denote by [x(n) the
k-bit binary representation of the integer n. Given N, we find its largest power k, so
N = 2% + b where 0 < b < 2% (k equals a; above). The N recursive phased-in codes
Cn(n) forn=0,1,..., N — 1 are computed by

0: Cp(n), it0<n<y,
Cn(n) =< Br(n), if b=0,
1:Bk(n—10), otherwise.
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Their lengths Ly (n) are given by

14+ Ly(n), if0<n<b,
Ly(n) =1k, ifb=0,
1+ k, otherwise.

Table 1.14 lists the resulting codes for N = 11, 13, and 18. It is obvious that these
are slightly different from the original codes of Acharya and JaJ4. The latter code for
N = 11, for example, consists of the sets Oxxz, 10x, and 11, while Pigeon’s formula
generates the sets lxxz, 01z, and 00.

n 11 13 18
0 00 00 00
1 010 0100 01
2 011 0101 10000
3 1000 0110 10001
4 1001 0111 10010
5 1010 1000 10011
6 1011 1001 10100
7 1100 1010 10101
8 1101 1011 10110
9 1110 1100 10111
10 1111 1101 11000
11 1110 11001
12 1111 11010
13 11011
14 11100
15 11101
16 11110
17 11111

Table 1.14: Codes for 11, 13, and 18.

The recursive phased-in codes bear a certain resemblance to the start-step-stop
codes of Section 2.2, but a quick glance at Table 2.3 shows the difference between the
two types of codes. A start-step-stop code consists of sets of codewords that start with
0, 10, 110, and so on and get longer and longer, while the recursive phased-in codes
consist of sets that start with the same prefixes but get shorter.

“The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms,” he [Einstein]
maintained. The same principle is at work in Ockham’s razor, in Feynman’s panegyric
upon the atomic doctrine, and in the technique of data compression in information
technology—all three of which extol economy of expression, albeit for different reasons.

—Hans Christian von Baeyer, Information, The New Language of Science (2004)
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1.12 Self-Delimiting Codes

Before we look at the main classes of VLCs, we list in this short section a few simple
techniques (the first few of which are due to [Chaitin 66]) to construct self-delimiting
codes, codes that have variable lengths and can be decoded unambiguously.

1. Double each bit of the original message, so the message becomes a set of pairs of
identical bits, then append a pair of different bits. Thus, the message 01001 becomes the
bitstring 00/11|00/00|11|01. This is simple but is obviously too long. It is also fragile,
because one bad bit will confuse any decoder (computer or human). A variation of
this technique precedes each bit of the number with an intercalary bit of 1, except the
last bit, which is preceded with a 0. Thus, 01001 become 1011101001. We can also
concentrate the intercalary bits together and have them followed by the number, as in
11110]01001 (which is the number itself preceded by its unary code).

2. Prepare a header with the length of the message and prepend it to the message.
The size of the header depends on the size of the message, so the header should be
made self-delimiting using method 1 above. Thus, the 6-bit message 010011 becomes
the header 00/11]11|00]|01 followed by 010011. It seems that the result is still very long
(16 bits to encode six bits), but this is because our message is so short. Given a 1-million
bit message, its length requires 20 bits. The self-delimiting header is therefore 42 bits
long, increasing the length of the original message by 0.0042%.

3. If the message is extremely long (trillions of bits) its header may become too long.
In such a case, we can make the header itself self-delimiting by writing it in raw format
and preceding it with its own header, which is made self-delimiting with method 1.

4. Tt is now clear that there may be any number of headers. The first header is
made self-delimiting with method 1, and all the other headers are concatenated to it in
raw format. The last component is the (very long) original binary message.

5. A decimal variable-length integer can be represented in base 15 (quindecimal) as
a string of nibbles (groups of four bits each), where each nibble is a base-15 digit (i.e.,
between 0 and 14) and the last nibble contains 16 = 11115. This method is sometimes
referred to as nibble code or byte coding. Table 2.21 lists some examples.

6. A variation on the nibble code is to start with the binary representation of the
integer n (or n — 1), prepend it with zeros until the total number of bits is divisible by
3, break it up into groups of three bits each, and prefix each group with a 0, except the
leftmost (or alternatively, the rightmost) group, which is prepended by a 1. The length
of this code for the integer n is 4[(log, 1) /3], so it is ideal for a distribution of the form

— O, n 1
9—4[(log; n)/3] 4, o (1.5)

This is a power law distribution with a parameter of 3/4. A natural extension of this
code is to k-bit groups. Such a code fits power law distributions of the form

1
ntti

(1.6)

7. If the data to be compressed consists of a large number of small positive integers,
then a word-aligned packing scheme may provide good (although not the best) compres-
sion combined with fast decoding. The idea is to pack several integers into fixed-size
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fields of a computer word. Thus, if the word size is 32 bits, 28 bits may be partitioned
into several k-bit fields while the remaining four bits become a selector that indicates
the value of k.

The method described here is due to [Anh and Moffat 05] who employ it to compress
inverted indexes. The integers they compress are positive and small because they are
differences of consecutive pointers that are in sorted order. The authors describe three
packing schemes, of which only the first, dubbed simple-9, is discussed here.

Simple-9 packs several small integers into 28 bits of a 32-bit word, leaving the
remaining four bits as a selector. If the next 28 integers to be compressed all have
values 1 or 2, then each can fit in one bit, making it possible to pack 28 integers in 28
bits. If the next 14 integers all have values of 1, 2, 3, or 4, then each fits in a 2-bit
field and 14 integers can be packed in 28 bits. At the other extreme, if the next integer
happens to be greater than 2'4 = 16, 384, then the entire 28 bits must be devoted to it,
and the 32-bit word contains just this integer. The choice of 28 is particularly fortuitous,
because 28 is divisible by 1, 2, 3, 4, 5, 7, 9, 14, and itself. Thus, a 32-bit word packed
in simple-9 may be partitioned in nine ways. Table 1.15 lists these nine partitions and
shows that at most three bits are wasted (in row e).

Number Code Unused
Selector of codes length bits

a 28 1 0
b 14 2 0
c 9 3 1
d 7 4 0
e 5 5 3
f 4 7 0
g 3 9 1
h 2 14 0
i 1 28 0

Table 1.15: Summary of the Simple-9 Code.

Given the 14 integers 4, 6, 1, 1, 3,5, 1, 7, 1, 13, 20, 1, 12, and 20, we encode the first
nine integers as ¢|011/101/000/000/010|100]000|110]000[b and the following five integers
as €[01100/10011]00000]01011]|10011|bbb, for a total of 64 bits, where each b indicates an
unused bit. The originators of this method point out that the use of a Golomb code
would have compressed the 14 integers into 58 bits, but the small loss of compression
efficiency of simple-9 is often more than compensated for by the speed of decoding. Once
the leftmost four bit of a 32-bit word are examined and the selector value is determined,
the remaining 28 bits can be unpacked with a few simple operations.

Allocating four bits for the selector is somewhat wasteful, because only nine of the
16 possible values are used, but the flexibility of the simple-9 code is the result of the
many (nine) factors of 28. It is possible to give up one selector value, cut the selector size
to three bits and increase the data segment to 29 bits, but 29 is a prime number, so a
29-bit segment cannot be partitioned into equal-size fields. The authors propose dividing
a 32-bit word into a 2-bit selector and a 30-bit segment for packing data. The integer
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30 has 10 factors, so a table of the simple-10 code, similar to Table 1.15, would have 10
rows. The selector field, however, can specify only four different values, which is why
the resulting code (not described here) is more complex and is denoted by relative-10
instead of simple-10.

’ Intercalary: Inserted between other elements or parts; interpolated.

1.13 Huffman Coding

David Huffman (1925-1999)

Being originally from Ohio, it is no wonder that Huffman went to Ohio State University
for his BS (in electrical engineering). What is unusual was his age
(18) when he earned it in 1944. After serving in the United States
Navy, he went back to Ohio State for an MS degree (1949) and then
to MIT, for a PhD (1953, electrical engineering).

That same year, Huffman joined the faculty at MIT. In 1967,
he made his only career move when he went to the University of
California, Santa Cruz as the founding faculty member of the Com-
puter Science Department. During his long tenure at UCSC,
Huffman played a major role in the development of the department
(he served as chair from 1970 to 1973) and he is known for his motto
“my products are my students.” Even after his retirement, in 1994, he remained active
in the department, teaching information theory and signal analysis courses.

Huffman made significant contributions in several areas, mostly information theory
and coding, signal designs for radar and communications, and design procedures for
asynchronous logical circuits. Of special interest is the well-known Huffman algorithm
for constructing a set of optimal prefix codes for data with known frequencies of occur-
rence. At a certain point he became interested in the mathematical properties of “zero
curvature” surfaces, and developed this interest into techniques for folding paper into
unusual sculptured shapes (the so-called computational origami).

Huffman coding is a popular method for compressing data with variable-length
codes. Given a set of data symbols and their frequencies of occurrence (or, equivalently,
their probabilities), the method constructs a set of variable-length codewords with the
shortest average length for the symbols. Huffman coding serves as the basis for several
popular applications implemented on popular platforms. Some programs use just the
Huffman method, while others use it as one step in a multistep compression process.
The Huffman method [Huffman 52] is somewhat similar to the Shannon-Fano method,
proposed independently by Claude Shannon and Robert Fano in the late 1940s ([Shan-
non 48] and [Fano 49]). It generally produces better codes, and like the Shannon-Fano
method, it produces the best code when the probabilities of the symbols are negative
powers of 2. The main difference between the two methods is that Shannon—Fano con-
structs its codes top to bottom (from the leftmost to the rightmost bits), while Huffman
constructs a code tree from the bottom up (builds the codes from right to left).
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Since its development in 1952 by D. Huffman, this method has been the subject of
intensive research in data compression. The long discussion in [Gilbert and Moore 59]
proves that the Huffman code is a minimum-length code in the sense that no other en-
coding has a shorter average length. An algebraic approach to constructing the Huffman
code is introduced in [Karp 61]. In [Gallager 74], Robert Gallager shows that the redun-
dancy of Huffman coding is at most p; + 0.086 where p; is the probability of the most-
common symbol in the alphabet. The redundancy is the difference between the average
Huffman codeword length and the entropy. Given a large alphabet, such as the set of
letters, digits and punctuation marks used by a natural language, the largest symbol
probability is typically around 15-20%, bringing the value of the quantity p; + 0.086 to
around 0.1. This means that Huffman codes are at most 0.1 bit longer (per symbol)
than an ideal entropy encoder, such as arithmetic coding.

The Huffman algorithm starts by building a list of all the alphabet symbols in
descending order of their probabilities. It then constructs a binary tree, the Huffman
code tree, with a symbol at every leaf, from the bottom up. This is done in steps,
where at each step two symbols with the smallest probabilities are selected, added to
the top of the partial tree, deleted from the list, and replaced with an auxiliary symbol
representing the two original symbols. When the list is reduced to just one auxiliary
symbol (representing the entire alphabet), the tree is complete. The tree is then traversed
to determine the codes of the individual symbols.

This process is best illustrated by an example. Given five symbols with probabilities
as shown in Figure 1.16a, they are paired in the following order:

1. Symbol a4 is combined with a; and both are replaced by the combined symbol ays,
whose probability is 0.2.

2. Four symbols are left, a1, with probability 0.4, and a9, ag, and a45, with probabilities
0.2 each. We arbitrarily select a3 and a45, combine them, and replace them with the
auxiliary symbol asys, whose probability is 0.4.

3. The three symbols a1, as, and asys, are now left, with probabilities 0.4, 0.2, and 0.4,
respectively. We arbitrarily select as and asy45, combine them, and replace them with
the auxiliary symbol as345, whose probability is 0.6.

4. Finally, we combine the two remaining symbols, a; and as345, and replace them with
a12345 with probability 1.

The tree is now complete. It is shown in Figure 1.16a “lying on its side” with its
root on the right and its five leaves on the left. To assign the codes, we arbitrarily assign
a bit of 1 to the top edge, and a bit of 0 to the bottom edge, of every pair of edges.
This results in the codewords 0, 10, 111, 1101, and 1100. The assignments of bits to the
edges is arbitrary.

The average size of this code is 0.4 x 14+0.2x2402x34+0.1x4+0.1x4=2.2
bits/symbol, but even more importantly, the Huffman code is not unique. Some of the
steps above were chosen arbitrarily, since there were more than two symbols with the
smallest probabilities. Figure 1.16b shows how the same five symbols can be combined
differently to obtain a different Huffman code (11, 01, 00, 101, and 100). The average
size of this code is 0.4 x 2+ 0.2 x 24 0.2 x 2+ 0.1 x 34 0.1 x 3 = 2.2 bits/symbol, the
same as the previous code.

Example. Given the eight symbols A, B, C, D, E, F, G, and H with probabilities
1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30, and 12/30, we draw three different Huffman
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0 d—10
a1 al . 0.6
0.4 12345 04 IERGVER S
1 1
a2345 )_11 1 0 —
a2z 0.2 o 06 az 0.2 0 1.0
az23 &— | ——————
0.4
1
azg 0.2 ——— a3 0.2 —5
345 6.0:4 )
as 0.1 —— 0 as 0.1
0.2
a45 $455 a4s
as 0.1 0 as 0.1 0

Figure 1.16: Two Equivalent Huffman Code Trees.

trees with heights 5 and 6 for these symbols and calculate the average code size for each
tree. Figure 1.17a,b,c shows the three trees. The codes sizes for the trees are

(5+5+5+52433+35+35+12)/30 = 76,30,
(5+5+4+4244.3+3-5+3-5+12)/30 = 76,30,
(6+6+5-+4243-3+3-5+3-5+12)/30 = 76,/30.

A
30 30
/\ /\ 18 H

18 H 18 H 7/ \ 30

AN /N AR /\

/\ /\ 5 EF G 10 20
5 EF G 5/\3F/\G 3/\D 5/\F 8/}{
/N /\ /\ /\ /\
2 3 2 EC D 2 C 2 E 3 G
/\/\ /\ /\ /\/\
A BCD A B A B A B CD
(a) (b) (c) (d)

Figure 1.17: Huffman Code Trees for Eight Symbols.

As a self-exercise, consider the following question. Figure 1.17d shows another
Huffman tree, with a height of 4, for the eight symbols introduced in the example above.
Explain why this tree is wrong.

The answer is, after adding symbols A, B, C, D, E, F, and G to the tree, we were
left with the three symbols ABEF (with probability 10/30), CDG (with probability
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8/30), and H (with probability 12/30). The two symbols with lowest probabilities were
ABEF and CDG, so they had to be merged. Instead, symbols CDG and H were merged,
creating a non-Huffman tree.

The leaves of a Huffman code tree correspond to the individual codewords, but
the interior nodes of the tree also play an important part. We already know that the
codewords produced by the tree of Figure 1.16a are 0, 10, 111, 1101, and 1100. Once 0
has been assigned as a codeword, all other codewords must start with 1. Thus, 1 is a
prefix of this code. Once 10 has been selected as a codeword, all the other codewords
must start with 11. Thus, 11 is also a prefix of this code. Similarly, once 111 became a
codeword, 110 became a prefix. Thus, the prefixes of this code are 1, 11, and 110, and
it is easy to see that they correspond to nodes assys, a345, and ays respectively. We can
therefore say that the interior nodes of a Huffman code tree correspond to the prefixes
of the code. It is often useful to claim that the root of the tree (node aj2345 in our case)
corresponds to the empty prefix, which is sometimes denoted by A. The fast Huffman
decoder of Section 1.13.3 is based on the code prefixes.

It turns out that the arbitrary decisions made in constructing the Huffman tree
affect the individual codes but not the average size of the code. Still, we have to answer
the obvious question, which of the different Huffman codes for a given set of symbols
is best? The answer, while not obvious, is simple: the best code is the one with the
smallest variance. The variance of a code measures how much the sizes of the individual
codes deviate from the average size. The variance of code 1.16a is

0.4(1 —2.2)2 +0.2(2 — 2.2)* + 0.2(3 — 2.2)* +- 0.1(4 — 2.2)* +-0.1(4 — 2.2)* = 1.36,
while the variance of code 1.16b is
0.4(2-2.2)2+0.2(2 - 2.2)* 4 0.2(2 — 2.2)> +0.1(3 — 2.2)% + 0.1(3 — 2.2)® = 0.16.

Code 1.16b is therefore preferable (see below). A careful look at the two trees shows
how to select the one we want. In the tree of Figure 1.16a, symbol a5 is combined with
a3, whereas in the tree of 1.16b it is combined with a;. The rule for constructing the
code with the smallest variance is therefore: when there are more than two smallest-
probability nodes, select the ones that are lowest and highest in the tree and combine
them. This will combine symbols of low probability with ones of high probability, thereby
reducing the total variance of the code.

If the encoder simply writes the compressed stream on a file, the variance of the
code makes no difference. A small-variance Huffman code is preferable only in cases
where the encoder transmits the compressed stream, as it is being generated, over a
communications line. In such a case, a code with large variance causes the encoder to
generate bits at a rate that varies all the time. Since the bits have to be transmitted at a
constant rate, the encoder has to use a buffer. Bits of the compressed stream are entered
into the buffer as they are being generated and are moved out of it at a constant rate,
to be transmitted. It is easy to see intuitively that a Huffman code with zero variance
will enter bits into the buffer at a constant rate, so only a short buffer will be needed.
The larger the code variance, the more variable is the rate at which bits enter the buffer,
requiring the encoder to use a larger buffer.
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The following claim is sometimes found in the literature:
It can be shown that the size of the Huffman code of a symbol
a; with probability P; is always less than or equal to [—log, P;].

Even though it is often correct, this claim is not true in general. It seems to be a wrong
corollary drawn by some authors from the Kraft-McMillan inequality, Equation (1.3). I
am indebted to Guy Blelloch for pointing this out and also for the example of Table 1.18.
In this example, the size of the Huffman code of a symbol a; is greater than [— log, P;].
The symbol in the second row of the table (indicated by an asterisk) has a 3-bit Huffman
code, but satisfies [—log, 0.3] = [1.737] = 2.

P, Code —log, P, [—logyP]
01 000  6.644 7
*30 001 1.737
34 01 1.556
.35 1 1.515

N NN

Table 1.18: A Huffman Code Example.

Note. It seems that the size of a code must also depend on the number n of symbols
(the size of the alphabet). A small alphabet requires just a few codes, so they can all be
short; a large alphabet requires many codes, so some must be long. This being so, how
can we say that the size of the code of symbol a; depends just on its probability P;?

The explanation is simple. Imagine a large alphabet where all the symbols have
(about) the same probability. Since the alphabet is large, that probability will be small,
resulting in long codes. Imagine the other extreme case, where certain symbols have
high probabilities (and, therefore, short codes). Since the probabilities have to add up
to 1, the remaining symbols will have low probabilities (and, therefore, long codes). We
therefore see that the size of a code depends on the probability, but is indirectly affected
by the size of the alphabet.

Figure 1.19 shows a Huffman code for the 26 letters of the English alphabet (see
also Table 3.13).

As a self-exercise, the reader may calculate the average size, entropy, and variance
of this code.

Example. We present the Huffman codes for equal probabilities. Figure 1.20 shows
Huffman codes for 5, 6, 7, and 8 symbols with equal probabilities. In the case where n is
a power of 2, the codewords are simply the fixed-sized (block) codes of the symbols. In
other cases, the codewords are very close to the block codes. This shows that symbols
with equal probabilities do not benefit from variable-length codes. (This is another way
of saying that random text cannot be compressed.) Table 1.21 shows the codes, their
average sizes and variances.

This example shows that symbols with equal probabilities don’t compress under the
Huffman method. This is understandable, since strings of such symbols normally make
random text, and random text does not compress. There may be special cases where
strings of symbols with equal probabilities are not random and can be compressed. A
good example is the string aja; ...aj1a20as ... asaza;z ... in which each symbol appears in
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000 E .1300 ————— ¢
0010 T .0900 30 |0
0011 A .0800

0100 O .0800 580
0101 N .0700 B e

0110 R .0650 28

0111 I .0650

10000 H .0600 0
10001 S .0600 N —
10010 D .0400 195 | o

10011 L .0350 I 1
10100 C .0300 gy 305 | ¢
10101 U .0300 1

10110 M .0300 11
10111 F .0200 N

11000 P .0200

11001 Y .0200 _ 420
11010 B .0150 070 | o
11011 W .0150 1

11100 G .0150 115
11101 V .0100 : .025 1
111100 J .0050
111101 K .0050 :'W 045
111110 X .0050 ——— 020
1111110 Q .0025
1111111 Z .0025 :'_ 010

Figure 1.19: A Huffman Code for the 26-Letter Alphabet.

a long run. This string can be compressed with RLE (run-length encoding, Section 2.23)
but not with Huffman codes.

Notice that the Huffman method cannot be applied to a two-symbol alphabet. In
such an alphabet, one symbol is assigned the code 0 and the other is assigned code 1.
The Huffman method cannot assign to any symbol a codeword shorter than one bit,
so it cannot improve on this simple code. If the original data (the source) consists of
individual bits, such as in the case of a bi-level (monochromatic) image, it is possible
to combine several bits (perhaps four or eight) into a new symbol and pretend that
the alphabet consists of these (16 or 256) symbols. The problem with this approach is
that the original binary data may have certain statistical correlations between the bits,
and some of these correlations would be lost when the bits are combined into symbols.
When a typical bi-level image (a drawing or a diagram) is digitized by scan lines, a
pixel is more likely to be followed by an identical pixel than by the opposite one. We
therefore have a file that can start with either a 0 or a 1 (each has 0.5 probability
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1.

Basic Codes

Table 1.21: Huffman Codes for 5-8 Symbols.

1 — 1 —
2 1 9 — 1
3 — 0 3 — 0
1 1
0
5 5 T
6 — |
1 ——
1 —
p— 1
9 — 1
3 — 0
3 — 0
4 1
L 4 1
S — 0 I
5 ] 0
6 — 1
6 — 1
7T — 0
7 0
g —
Figure 1.20: Huffman Codes for Equal Probabilities.
Avg.
n p al a2 as ag as ag ar as size Var.
5 0.200 111 110 101 100 0 2.6 0.64
6 0.167 111 110 101 100 01 00 2.672 0.2227
7 0143 111 110 101 100 011 010 00 2.86 0.1226
8§ 0.125 111 110 101 100 O11 010 001 o000 3 0
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of being the first bit). A zero is more likely to be followed by another 0 and a 1 by
another 1. Figure 1.22 is a finite-state machine illustrating this situation. If these bits
are combined into, say, groups of eight, the bits inside a group will still be correlated,
but the groups themselves will not be correlated by the original pixel probabilities. If
the input stream contains, e.g., the two adjacent groups 00011100 and 00001110, they
will be encoded independently, ignoring the correlation between the last 0 of the first
group and the first 0 of the next group. Selecting larger groups improves this situation
but increases the number of groups, which implies more storage for the code table and
longer time to calculate the table.

Start

0,50% 1,50%

1,33%

i. 0,40% .:1%0%

0,67%

Figure 1.22: A Finite-State Machine.

Note. When the group size increases from s bits to s+ n bits, the number of groups
increases exponentially from 2° to 251" = 2% x 27,

A more complex approach to image compression by Huffman coding is to create
several complete sets of Huffman codes. If the group size is, e.g., eight bits, then several
sets of 256 codes are generated. When a symbol S is to be encoded, one of the sets
is selected, and S is encoded using its code in that set. The choice of set depends on the
symbol preceding S.

Example. Given an image with 8-bit pixels where half the pixels have values 127
and the other half have values 128, we analyze the performance of RLE on the individual
bitplanes of such an image, and compare it with what can be achieved with Huffman
coding. The binary value of 127 is 01111111 and that of 128 is 10000000. Half the
pixels in each bitplane will therefore be zeros and the other half will be 1’s. In the worst
case, each bitplane will be a checkerboard, i.e., will have many runs of size one. In such
a case, each run requires a 1-bit code, leading to one codebit per pixel per bitplane,
or eight codebits per pixel for the entire image, resulting in no compression at all. In
comparison, a Huffman code for such an image requires just two codes (since there are
just two pixel values) and they can be one bit each. This leads to one codebit per pixel,
or a compression factor of eight.

1.13.1 Dual Tree Coding

Dual tree coding, an idea due to G. H. Freeman ([Freeman 91] and [Freeman 93]),
combines Tunstall and Huffman coding in an attempt to improve the latter’s performance
for a 2-symbol alphabet. The idea is to use the Tunstall algorithm to extend such an
alphabet from 2 symbols to 2* strings of symbols, and select k such that the probabilities
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of the strings will be close to negative powers of 2. Once this is achieved, the strings
are assigned Huffman codes and the input stream is compressed by replacing the strings
with these codes. This approach is illustrated here by a simple example.

Given a binary source that emits two symbols a and b with probabilities 0.15 and
0.85, respectively, we try to compress it in four different ways as follows:

1. We apply the Huffman algorithm directly to the two symbols. This simply
assigns the two 1-bit codes 0 and 1 to a and b, so there is no compression.

2. We combine the two symbols to obtain the four 2-symbol strings aa, ab, ba, and
bb, with probabilities 0.0225, 0.1275, 0.1275, and 0.7225, respectively. The four strings
are assigned Huffman codes as shown in Figure 1.23a, and it is obvious that the average
code length is 0.0225 x 3 4+ 0.1275 x 3 + 0.1275 x 2 4+ 0.7225 x 1 = 1.4275 bits. On
average, each 2-symbol string is compressed to 1.4275 bits, yielding a compression ratio
of 1.4275/2 =~ 0.714.

@ /N N

/\ 15 . 85 " 50 1 bbb
' 0
/\ v A12é\47225 .25/\(1
VAN VAN INAN
aa ab 1084 614 ba bba

(a) (b) ()

Figure 1.23: Dual Tree Coding.

3. We apply Tunstall’s algorithm to obtain the four strings bbb, bba, ba, and a with
probabilities 0.614, 0.1084, 0.1275, and 0.15, respectively. The resulting parse tree is
shown in Figure 1.23b. Tunstall’s method compresses these strings by replacing each
with a 2-bit code. Given a string of 257 bits with these probabilities, we expect the
strings bbb, bba, ba, and a to occur 61, 11, 13, and 15 times, respectively, for a total of
100 strings. Thus, Tunstall’s method compresses the 257 input bits to 2 x 100 = 200
bits, for a compression ratio of 200/257 ~ 0.778.

4. We now change the probabilities of the four strings above to negative powers
of 2, because these are the best values for the Huffman method. Strings bbb, bba,
ba, and a are thus assigned the probabilities 0.5, 0.125, 0.125, and 0.25, respectively.
The resulting Huffman code tree is shown in Figure 1.23c and it is easy to see that
the 61, 11, 13, and 15 occurrences of these strings will be compressed to a total of
61 x 1+ 11 x 34+ 13 x 3+ 15 x 2 = 163 bits, resulting in a compression ratio of
163/257 = 0.634, much better.

To summarize, applying the Huffman method to a 2-symbol alphabet produces no
compression. Combining the individual symbols in strings as in 2 above or applying the
Tunstall method as in 3, produce moderate compression. In contrast, combining the
strings produced by Tunstall with the codes generated by the Huffman method, results
in much better performance. The dual tree method starts by constructing the Tunstall
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parse tree and then using its leaf nodes to construct a Huffman code tree. The only
(still unsolved) problem is determining the best value of k. In our example, we iterated
the Tunstall algorithm until we had 22 = 4 strings, but iterating more times may have
resulted in strings whose probabilities are closer to negative powers of 2.

1.13.2 Huffman Decoding

Before starting the compression of a data stream, the compressor (encoder) has to de-
termine the codes. It does that based on the probabilities (or frequencies of occurrence)
of the symbols. The probabilities or frequencies have to be written, as side information,
on the compressed stream, so that any Huffman decompressor (decoder) will be able to
decompress the stream. This is easy, since the frequencies are integers and the proba-
bilities can be written as scaled integers. It normally adds just a few hundred bytes to
the compressed stream. It is also possible to write the variable-length codes themselves
on the stream, but this may be awkward, because the codes have different sizes. It is
also possible to write the Huffman tree on the stream, but this may require more space
than just the frequencies.

In any case, the decoder must know what information is supposed to be at the start
of the stream, read it, and construct the Huffman tree for the alphabet. Only then can
it read and decode the rest of the stream. The algorithm for decoding is simple. Start at
the root and read the first bit off the compressed stream. If it is a 0, follow the bottom
edge of the tree; if it is a 1, follow the top edge. Read the next bit and move another
edge toward the leaves of the tree. When the decoder arrives at a leaf node, it finds the
original, uncompressed code of the symbol (normally its ASCII code), and that code is
emitted by the decoder. The process starts again at the root with the next bit.

This process is illustrated for the five-symbol alphabet of Figure 1.24. The four-
symbol input string a4asasaq is encoded into 1001100111. The decoder starts at the root,
reads the first bit 1, and goes up. The second bit 0 sends it down, as does the third bit.
This brings the decoder to leaf a4, which it emits. It again returns to the root, reads
110, moves up, up, and down, to reach leaf ao, and so on.

17

2 — | 1

3 — 01y
4 0
5

Figure 1.24: Huffman Decoding lllustrated.

1.13.3 Fast Huffman Decoding

Decoding a Huffman-compressed file by sliding down the code tree for each symbol is
conceptually simple, but slow. The compressed file has to be read bit by bit and the
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decoder has to advance a node in the code tree for each bit. The method of this section,
originally conceived by [Choueka et al. 85] but later reinvented by others, uses preset
partial-decoding tables. These tables depend on the particular Huffman code used, but
not on the data to be decoded. The compressed file is read in chunks of k bits each
(where k is normally 8 or 16 but can have other values) and the current chunk is used
as a pointer to a table. The table entry that is selected in this way can decode several
symbols and it also points the decoder to the table to be used for the next chunk.

As an example, consider the Huffman code of Figure 1.16a, where the five codewords
are 0, 10, 111, 1101, and 1100. The string of symbols ajajasasasaias . .. is compressed
by this code to the string 0|0/10/1101|111]0]1100. ... We select k = 3 and read this string
in 3-bit chunks 001/011|011|110|110]0.... Examining the first chunk, it is easy to see
that it should be decoded into aja; followed by the single bit 1 which is the prefix of
another codeword. The first chunk is 001 = 149, so we set entry 1 of the first table (table
0) to the pair (aja;, 1). When chunk 001 is used as a pointer to table 0, it points to entry
1, which immediately provides the decoder with the two decoded symbols a;a; and also
directs it to use table 1 for the next chunk. Table 1 is used when a partially-decoded
chunk ends with the single-bit prefix 1. The next chunk is 011 = 31¢, so entry 3 of
table 1 corresponds to the encoded bits 1|011. Again, it is easy to see that these should
be decoded to az and there is the prefix 11 left over. Thus, entry 3 of table 1 should be
(az2,2). It provides the decoder with the single symbol a and also directs it to use table 2
next (the table that corresponds to prefix 11). The next chunk is again 011 = 34, so
entry 3 of table 2 corresponds to the encoded bits 11|011. It is again obvious that these
should be decoded to a4 with a prefix of 1 left over. This process continues until the
end of the encoded input. Figure 1.25 is the simple decoding algorithm in pseudocode.

i<-0; output<—null;
repeat
j¢input next chunk;
(s,i)+Table;[j];
append s to output;
until end-of-input

Figure 1.25: Fast Huffman Decoding.

Table 1.26 lists the four tables required to decode this code. It is easy to see that
they correspond to the prefixes A (null), 1, 11, and 110. A quick glance at Figure 1.16a
shows that these correspond to the root and the four interior nodes of the Huffman code
tree. Thus, each partial-decoding table corresponds to one of the four prefixes of this
code. The number m of partial-decoding tables therefore equals the number of interior
nodes (plus the root) which is one less than the number N of symbols of the alphabet.

Notice that some chunks (such as entry 110 of table 0) simply send the decoder
to another table and do not provide any decoded symbols. Also, there is a tradeoff
between chunk size (and thus table size) and decoding speed. Large chunks speed up
decoding, but require large tables. A large alphabet (such as the 128 ASCII characters
or the 256 8-bit bytes) also requires a large set of tables. The problem with large tables
is that the decoder has to set up the tables after it has read the Huffman codes from the
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Ty = A Ty =1 T, =11 Ty =110
000 ai1a1ay 0 1|000 20101 0 11|000 asaq 0 110|000 asaiaq 0
001 ajaq; 1 1]001 aga; 1 111001 as 1 110j001 asa; 1
010 ajaz 0 | 1010 agas O | 11/010 a4a; O 110/010 asas O
011 ay 2 | 1011 ay 2 | 11/011 a4 1 | 110[011 as 2
100 a1 0 1|1OO as 0 11|100 azaial 0 110|100 a4a7101 0
101 aq 1 1]101 ay 0 | 11101 aga; 1 110]101 a4ay 1
110 — 3 | 1]110 asa; 0 | 11j110 asaz O 110{110 a4as O
111 as 0 | 1111 as 1| 11111 as 2 | 110]111 ay 2

Table 1.26: Partial-Decoding Tables for a Huffman Code.

compressed stream and before decoding can start, and this process may preempt any
gains in decoding speed provided by the tables.

To set up the first table (table 0, which corresponds to the null prefix A), the
decoder generates the 2* bit patterns 0 through 2¢ — 1 (the first column of Table 1.26)
and employs the decoding method of Section 1.13.2 to decode each pattern. This yields
the second column of Table 1.26. Any remainders left are prefixes and are converted
by the decoder to table numbers. They become the third column of the table. If no
remainder is left, the third column is set to 0 (use table 0 for the next chunk). Each of
the other partial-decoding tables is set in a similar way. Once the decoder decides that
table 1 corresponds to prefix p, it generates the 2¥ patterns p|00...0 through p[11...1
that become the first column of that table. It then decodes that column to generate the
remaining two columns.

This method was conceived in 1985, when storage costs were considerably higher
than today (early 2007). This prompted the developers of the method to find ways to
cut down the number of partial-decoding tables, but these techniques are less important
today and are not described here.

Truth is stranger than fiction, but this is because fiction is obliged to stick to
probability; truth is not.

—Anonymous

1.13.4 Average Code Size

Figure 1.27a shows a set of five symbols with their probabilities and a typical Huffman
code tree.

Symbol A appears 55% of the time and is assigned a 1-bit code, so it contributes
0.55-1 bits to the average code size. Symbol E appears only 2% of the time and is
assigned a 4-bit Huffman code, so it contributes 0.02-4 = 0.08 bits to the code size. The
average code size is therefore calculated to be

0.55-140.25-24+0.15-3+0.03-4+0.02 -4 = 1.7 bits per symbol.
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A 0.55
1
B 0.25
0.45
C0.15
0.2
D 0.03
] 0.05
E 0.02
(a)
- d -
s ~

(b)

Figure 1.27: Huffman Code Trees.

Surprisingly, the same result is obtained by adding the values of the four internal nodes
of the Huffman code tree 0.05 + 0.2 + 0.45 + 1 = 1.7. This provides a way to compute
the average code size of a set of Huffman codes without any multiplications. Simply
add the values of all the internal nodes of the tree. Table 1.28 (where internal nodes
are shown in italics) illustrates why this works. The left column consists of the values
of all the internal nodes. The right columns show how each internal node is the sum of
some of the leaf nodes. Summing the values in the left column yields 1.7, and summing
the other columns shows that this 1.7 is the sum of the four values 0.02, the four values
0.03, the three values 0.15, the two values 0.25, and the single value 0.55.

This argument can be extended to the general case. It is easy to show that, in a
Huffman-like tree (a tree where each node is the sum of its children), the weighted sum
of the leaves, where the weights are the distances of the leaves from the root, equals
the sum of the internal nodes. (This property has been communicated to me by John
Motil.)

Figure 1.27b shows such a tree, where we assume that the two leaves 0.02 and 0.03
have d-bit Huffman codes. Inside the tree, these leaves become the children of internal
node 0.05, which, in turn, is connected to the root by means of the d — 2 internal nodes
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0.05 = =0.024+0.03 + - --
ap =0.054+...=0.0240.034+---
aa =a3 +...=0.0240.034---

.05 = .02+ .03 .

20 =.05+ .15 =.024 .03+ .15 : =

45 =.20+ .25 =.024+ .03+ .15+ .25 ag—2 =ag—3+...=0.024+0.03+---
1.0 = .45+ .55 = .02+ .03+ .15+ .25+ .55 1.0 =ag_2+...=0.0240.03+---
Table 1.28: Composition of Nodes. Table 1.29: Composition of Nodes.

ay through ag_o. Table 1.29 has d rows and shows that the two values 0.02 and 0.03
are included in the various internal nodes exactly d times. Adding the values of all the
internal nodes produces a sum that includes the contributions 0.02 - d + 0.03 - d from
the two leaves. Since these leaves are arbitrary, it is clear that this sum includes similar
contributions from all the other leaves, so this sum is the average code size. Since this
sum also equals the sum of the left column, which is the sum of the internal nodes, it is
clear that the sum of the internal nodes equals the average code size.

Notice that this proof does not assume that the tree is binary. The property illus-
trated here exists for any tree where a node contains the sum of its children.

“It needs compression,” I suggested, cautiously.
—Rudyard Kipling

1.13.5 Number of Codes

Since the Huffman code is not unique, a natural question is how many different codes
are there? Figure 1.30a shows a Huffman code tree for six symbols, from which we can
answer this question in two different ways.

Answer 1. The tree of Figure 1.30a has five interior nodes, and in general, a Huffman
code tree for n symbols has n—1 interior nodes. Each interior node has two edges coming
out of it, labeled 0 and 1. Swapping the two labels produces a different Huffman code
tree, so the total number of different Huffman code trees is 2"~! (in our example, 2° or
32). The tree of Figure 1.30b, for example, shows the result of swapping the labels of
the two edges of the root. Table 1.31a,b lists the codes generated by the two trees.

Answer 2. The six codes of Table 1.31a can be divided into the four classes 00z,
10y, 01, and 11, where = and y are 1-bit each. It is possible to create different Huffman
codes by changing the first two bits of each class. Since there are four classes, this is
the same as creating all the permutations of four objects, something that can be done
in 4! = 24 ways. In each of the 24 permutations it is also possible to change the values
of z and y in four different ways (since they are bits) so the total number of different
Huffman codes in our six-symbol example is 24 x 4 = 96.

The two answers are different because they count different things. Answer 1 counts
the number of different Huffman code trees, while answer 2 counts the number of different
Huffman codes. It turns out that our example can generate 32 different code trees but
only 94 different codes instead of 96. This shows that there are Huffman codes that
cannot be generated by the Huffman method! Table 1.31c shows such an example. A
look at the trees of Figure 1.30 should convince the reader that the codes of symbols 5
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0 0
1 .11 — o 1 .11 — o
1 1
2 12 — 2 .12 —
0 0 0 1
3 .13 1— 0 3 .13 1— 0 000 100 000
2 2 001 101 001
b R 100 000 010
5 .24 5 .24 101 001 011
1 1 01 11 10
6 .26 6 .26 1 o0l 11
(a) (b) (a) (b) (c)
Figure 1.30: Two Huffman Code Trees. Table 1.31.

and 6 must start with different bits, but in the code of Table 1.31c they both start with
1. This code is therefore impossible to generate by any relabeling of the nodes of the
trees of Figure 1.30.

1.13.6 Ternary Huffman Codes

The Huffman code is not unique. Moreover, it does not have to be binary! The Huffman
method can easily be applied to codes based on other number systems (m-ary codes).
Figure 1.32a shows a Huffman code tree for five symbols with probabilities 0.15, 0.15,
0.2, 0.25, and 0.25. The average code size is

2x0.25 4+ 3%x0.15 4+ 3x0.15 + 2x0.20 4+ 2% 0.25 = 2.3 bits/symbol.

Figure 1.32b shows a ternary Huffman code tree for the same five symbols. The tree
is constructed by selecting, at each step, three symbols with the smallest probabilities
and merging them into one parent symbol, with the combined probability. The average
code size of this tree is

2x0.15 4+ 2x0.15 + 2x0.20 + 1x0.25 + 1x0.25 = 1.5 trits/symbol.

Notice that the ternary codes use the digits 0, 1, and 2.

Example. Given seven symbols with probabilities .02, .03, .04, .04, .12, .26, and
.49, we construct binary and ternary Huffman code trees for them and calculate the
average code size in each case. The two trees are shown in Figure 1.32c¢,d. The average
code size for the binary Huffman tree is

1%x0.49 +2x0.25 + 5x0.02 + 5x0.03 + 5x .04 + 5x0.04 4+ 3x0.12 = 2 bits/symbol,
and that of the ternary tree is

1x0.26 + 3x0.02 + 3%x0.03 4+ 3x0.04 + 2x0.04 + 2x0.12 + 1x0.49 = 1.34 trits/symbol.
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1.0
25/\30 45 .50 25 .25
N2 N2
15 15 20 25 15 .15 .20
(a) (b)
1.0
N
49 51
/\
.26 25 1.0
N
13 12 .26 .25 49
N I
05 08 .09 .04 12
VAN I
02 03 04 .04 .02 .03 .04

Figure 1.32: Binary and Ternary Huffman Code Trees.

1.13.7 Height of a Huffman Tree

The height of the code tree generated by the Huffman algorithm may sometimes be
important because the height is also the length of the longest code in the tree. The
popular Deflate method, for example, limits the lengths of certain Huffman codes to
just 15 bits (because they have to fit in a 16-bit memory word or register).

It is easy to see that the shortest Huffman tree is created when the symbols have
equal probabilities. If the symbols are denoted by A, B, C, and so on, then the algorithm
combines pairs of symbols, such A and B, C and D, in the lowest level, and the rest of the
tree consists of interior nodes as shown in Figure 1.33a. The tree is balanced or close
to balanced and its height is [log, n]. In the special case where the number of symbols
n is a power of 2, the height is exactly log, n. In order to generate the tallest tree, we
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need to assign probabilities to the symbols such that each step in the Huffman method
will increase the height of the tree by 1. Recall that each step in the Huffman algorithm
combines two symbols. Thus, the tallest tree is obtained when the first step combines
two of the n symbols and each subsequent step combines the result of its predecessor
with one of the remaining symbols (Figure 1.33b). The height of the final code tree is
therefore n — 1, and it is referred to as a lopsided or unbalanced tree.

It is easy to see what symbol probabilities result in such a tree. Denote the two
smallest probabilities by a and b. They are combined in the first step to form a node
whose probability is a + b. The second step will combine this node with an original
symbol if one of the symbols has probability a 4+ b (or smaller) and all the remaining
symbols have greater probabilities. Thus, after the second step, the root of the tree
has probability a + b + (a + b) and the third step will combine this root with one of
the remaining symbols if its probability is a + b + (a + b) and the probabilities of the
remaining n — 4 symbols are greater. It does not take much to realize that the symbols
have to have probabilities p; = a, po = b, p3 = a+b = p1 +p2, pa = b+ (a+b) = pa+ps,
ps = (@ +b) + (a+ 2b) = p3 + pa, ps = (a + 2b) + (2a + 3b) = py + ps5, and so on
(Figure 1.33¢). These probabilities form a Fibonacci sequence (Section 2.18) whose first
two elements are a and b. As an example, we select a = 5 and b = 2 and generate the
5-number Fibonacci sequence 5, 2, 7, 9, and 16. These five numbers add up to 39, so
dividing them by 39 produces the five probabilities 5/39, 2/39, 7/39, 9/39, and 15/39.
The Huffman tree generated by them has a maximal height (which is 4).

/\ 5a+é)>\
/\ 0 10/>\ Ba;jﬁ-@\
/\ /\ o N af2b N
A NS D SN N

000 001 010 011 100 101 110 111 11110 11111 a b

(a) (b) (c)

Figure 1.33: Shortest and Tallest Huffman Trees.

In principle, symbols in a set can have any probabilities, but in practice, the proba-
bilities of symbols in an input file are computed by counting the number of occurrences
of each symbol. Imagine a text file where only the nine symbols A through I appear.
In order for such a file to produce the tallest Huffman tree, where the codes will have
lengths from 1 to 8 bits, the frequencies of occurrence of the nine symbols have to form a
Fibonacci sequence of probabilities. This happens when the frequencies of the symbols
are 1, 1, 2, 3, 5, 8, 13, 21, and 34 (or integer multiples of these). The sum of these
frequencies is 88, so our file has to be at least that long in order for a symbol to have
8-bit Huffman codes. Similarly, if we want to limit the sizes of the Huffman codes of a
set of n symbols to 16 bits, we need to count frequencies of at least 4180 symbols. To
limit the code sizes to 32 bits, the minimum data size is 9,227,464 symbols.
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If a set of symbols happens to have the Fibonacci probabilities and therefore results
in a maximal-height Huffman tree with codes that are too long, the tree can be reshaped
(and the maximum code length shortened) by slightly modifying the symbol probabil-
ities, so they are not much different from the original, but do not form a Fibonacci
sequence.

1.13.8 Canonical Huffman Codes

The code of Table 1.31c has a simple interpretation. It assigns the first four symbols
the 3-bit codes 0, 1, 2, 3, and the last two symbols the 2-bit codes 2 and 3. This is an
example of a canonical Huffman code. Such a code has been selected from among the
several (or even many) possible Huffman codes because its properties make it easy and
fast to use and because it can be encoded more efficiently than the alternative codes.

Canonical (adjective)

Of, relating to, or required by canon law.

Of or appearing in the biblical canon.

Conforming to orthodox or well-established rules or patterns, as of procedure.
Of or belonging to a cathedral chapter.

Of or relating to a literary canon.

Music having the form of a canon.

SOt

Table 1.34 shows a slightly bigger example of a canonical Huffman code. Imagine
a set of 16 symbols (whose probabilities are irrelevant and are not shown) such that
four symbols are assigned 3-bit codes, five symbols are assigned 5-bit codes, and the
remaining seven symbols are assigned 6-bit codes. Table 1.34a shows a set of possible
Huffman codes, while Table 1.34b shows a set of canonical Huffman codes. It is easy to
see that the seven 6-bit canonical codes are simply the 6-bit integers 0 through 6. The
five codes are the 5-bit integers 4 through 8, and the four codes are the 3-bit integers 3
through 6. We first show how these codes are generated and then how they are used.

1: 000 011 9: 10100 01000

2: 001 100 10: 101010 000000

3: 010 101 11: 101011 000001

4: 011 110 12: 101100 000010

5: 10000 00100 13: 101101 000011

6: 10001 00101 14: 101110 000100

7: 10010 00110 15: 101111 000101 length: 1 2 345 6

8: 10011 00111 16: 110000 000110 numl: 004057
(a) (b) (a) (b) first: 243540

Table 1.34. Table 1.35.

The top row of Table 1.35 (length) lists the possible code lengths, from 1 to 6 bits.
The second row (numl) lists the number of codes of each length, and the bottom row
(first) lists the first code in each group. This is why the three groups of codes start with
values 3, 4, and 0. To obtain the top two rows we need to compute the lengths of all
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the Huffman codes for the given alphabet (see below). The third row is computed by
setting “first[6]:=0;” and iterating

for 1:=5 downto 1 do first[1l]:=[(first[1+1]+numl[1+1])/2];

This guarantees that all the 3-bit prefixes of codes longer than three bits will be less
than first[3] (which is 3), all the 5-bit prefixes of codes longer than five bits will be
less than first[5] (which is 4), and so on. Once it is known how many codes are
needed (and what the first code is) for each length, it is trivial to construct the full set
of canonical codewords.

Now, for the applications of these unusual codes. Canonical Huffman codes are
useful in cases where the alphabet is large and where fast decoding is mandatory. Because
of the way the codes are constructed, it is easy for the decoder to identify the length
of a code by reading and examining input bits one by one. Once the length is known,
the symbol can be found in one step. The pseudocode listed here shows the rules for
decoding;:

1:=1; input v;

while v<first[1]

append next input bit to v; 1:=1+1;
endwhile

As an example, suppose that the next code is 00110. As bits are input and appended
to v, it goes through the values 0, 00=0, 001=1, 0011=3, 00110=6, while 1 is incremented
from 1 to 5. All steps except the last satisfy v<first[1], so the last step determines
the value of 1 (the code length) as 5. The symbol itself is found by subtracting v —
first[5] = 6 — 4 = 2, so it is the third symbol (numbering starts from 0) in group
1 =5 (symbol 7 of the 16 symbols).

It has been mentioned that canonical Huffman codes are useful in cases where the
alphabet is large and fast decoding is important. A practical example is a collection
of documents archived and compressed by a word-based adaptive Huffman coder. In
an archive, a slow encoder is acceptable, but the decoder should be fast. When the
individual symbols are words, the alphabet may be huge, making it impractical, or even
impossible, to construct the Huffman code tree. However, even with a huge alphabet,
the number of different code lengths is small, rarely exceeding 20 bits (just the number of
20-bit codes is about a million). If canonical Huffman codes are used, and the maximum
code length is L, then the code length 1 of a symbol is found by the decoder in at most
L steps, and the symbol itself is identified in one more step.

He uses statistics as a drunken man uses lampposts—for support rather than
illumination.

—Andrew Lang, Treasury of Humorous Quotations

The last point to be discussed is the encoder. In order to construct the canonical
Huffman code, the encoder needs to know the length of the Huffman code of every sym-
bol. The main problem is the large size of the alphabet, which may make it impractical
or even impossible to build the entire Huffman code tree in memory. The algorithm
presented here (see [Hirschberg and Lelewer 90] and [Sieminski 88]) solves this problem.
It determines the code sizes for an alphabet of n symbols using just one array of size
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2n. One half of this array is used as a heap, so we start with a short description of this
useful data structure.

A binary tree is a tree where every node has at most two children (i.e., it may have
0, 1, or 2 children). A complete binary tree is a binary tree where every node except
the leaves has exactly two children. A balanced binary tree is a complete binary tree
where some of the bottom-right nodes may be missing. A heap is a balanced binary tree
where every leaf contains a data item and the items are ordered such that every path
from a leaf to the root traverses nodes that are in sorted order, either nondecreasing (a
max-heap) or nonincreasing (a min-heap). Figure 1.36 shows examples of min-heaps.

Wlﬁ Wlﬁhlﬁhlﬁ

| || I || | || l_

1317 20 25 13 17 20 13 17 20 25 17 20
(a) (b) () (d)

Figure 1.36: Min-Heaps.

A common operation on a heap is to remove the root and rearrange the remaining
nodes to get back a heap. This is called sifting the heap. The four parts of Figure 1.36
show how a heap is sifted after the root (with data item 5) has been removed. Sifting
starts by moving the bottom-right node to become the new root. This guarantees that
the heap will remain a balanced binary tree. The root is then compared with its children
and may have to be swapped with one of them in order to preserve the ordering of a
heap. Several more swaps may be necessary to completely restore heap ordering. It is
easy to see that the maximum number of swaps equals the height of the tree, which is
[log, n].

The reason a heap must always remain balanced is that this makes it possible to
store it in memory without using any pointers. The heap is said to be “housed” in an
array. To house a heap in an array, the root is placed in the first array location (with
index 1), the two children of the node at array location ¢ are placed at locations 2i and
2i 4+ 1, and the parent of the node at array location j is placed at location |j/2]. Thus
the heap of Figure 1.36a is housed in an array by placing the nodes 5, 9, 11, 13, 17, 20,
and 25 in the first seven locations of the array.

The algorithm uses a single array A of size 2n. The frequencies of occurrence of the
n symbols are placed in the top half of A (locations n + 1 through 2n), and the bottom
half of A (locations 1 through n) becomes a min-heap whose data items are pointers to
the frequencies in the top half (Figure 1.37a). The algorithm then goes into a loop where
in each iteration the heap is used to identify the two smallest frequencies and replace
them with their sum. The sum is stored in the last heap position A[h], and the heap
shrinks by one position (Figure 1.37b). The loop repeats until the heap is reduced to
just one pointer (Figure 1.37c¢).
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| —

(2) | Heap pointers | Leaves |
1 n 2n

. | —

(b) | Heap pointers | Tree pointers and leaves |
1 h 2n
IR !

(c) | | Tree pointers |
h 2n

Figure 1.37: Huffman Heaps and Leaves in an Array.

We now illustrate this part of the algorithm using seven frequencies. The table
below shows how the frequencies and the heap are initially housed in an array of size
14. Pointers are shown in italics, and the heap is delimited by square brackets.

1 2 3 4 56 7 8 9 10 11

(14 12 13 10 11 9 8] 25 20 13 17

ol
oy
o=

1

The first iteration selects the smallest frequency (5), removes the root of the heap
(pointer 14), and leaves A[7] empty.
1 2 34 5 67 8 9 10

[12 10 13 8 11 9] 25 20 13 17

1

H
oo
=l
ot

The heap is sifted, and its new root (12) points to the second smallest frequency (9)
in A[12]. The sum 549 is stored in the empty location 7, and the three array locations
A[1], A[12], and A[14] are set to point to that location.

1 2 34 56 7 8 9 10 11 12 13 14
[7 10 13 8 11 9] 5+9 25 20 13 17 7 11 7
The heap is now sifted.
1 234 56 7 8 9 10 11 12 13 14
[13 10 7 & 11 9] 14 25 20 13 17 7 11 7

The new root is 13, implying that the smallest frequency (11) is stored at A[13].
The root is removed, and the heap shrinks to just five positions, leaving location 6 empty.

1 23456 7 8

[10 11 7 8 9] 14 25 2

10 11 12 13 14

9
0 13 17 7 11 7

The heap is now sifted. The new root is 10, showing that the second smallest
frequency, 13, is stored at A[10]. The sum 11 + 13 is stored at the empty location 6,

and the three locations A[1], A[13], and A[10] are set to point to 6.
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1 2345 6 7 8 9 10 11 12 13 14
6 11 7 8 9] 11+13 14 25 20 6 17 7 6 7
Figure 1.38 shows how the loop continues until the heap shrinks to just one node
that is the single pointer 2. This indicates that the total frequency (which happens to
be 100 in our example) is stored in A[2]. All other frequencies have been replaced by
pointers. Figure 1.39a shows the heaps generated during the loop.
The final result of the loop is
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from which it is easy to figure out the code lengths of all seven symbols. To find the
length of the code of symbol 14, e.g., we follow the pointers 7, 5, 3, 2 from A[14] to the
root. Four steps are necessary, so the code length is 4.

The code lengths for the seven symbols are 2, 2, 3, 3, 4, 3, and 4 bits. This can also
be verified from the Huffman code tree of Figure 1.39b. A set of codes derived from this
tree is shown in the following table:

Count: 25 20 13 17 9 11 5
Code: 01 11 101 000 0011 100 0010
Length: 2 2 3 3 4 3 4

1.13.9 Is Huffman Coding Dead?

The advantages of arithmetic coding are well known to users of compression algorithms.
Arithmetic coding can compress data to its entropy, its adaptive version works well if
fed the correct probabilities, and its performance does not depend on the size of the
alphabet. On the other hand, arithmetic coding is slower than Huffman coding, its
compression potential is not always utilized to its maximum, its adaptive version is
very sensitive to the symbol probabilities and in extreme cases may even expand the
data. Finally, arithmetic coding is not robust; a single error may propagate indefinitely
and may result in wrong decoding of a large quantity of compressed data. (Some users
may complain that they don’t understand arithmetic coding and have no idea how to
implement it, but this doesn’t seem a serious concern, because implementations of this
method are available for all major computing platforms.) A detailed comparison and
analysis of both methods is presented in [Bookstein and Klein 93], with the conclusion
that arithmetic coding has the upper hand only in rare situations.

In [Gallager 74], Robert Gallager shows that the redundancy of Huffman coding is at
most p; +0.086 where p; is the probability of the most-common symbol in the alphabet.
The redundancy is the difference between the average Huffman codeword length and
the entropy. Since arithmetic coding can compress data to its entropy, the quantity
p1+0.086 indicates by how much arithmetic coding outperforms Huffman coding. Given
a 2-symbol alphabet, the more probable symbol appears with probability 0.5 or more,
but given a large alphabet, such as the set of letters, digits and punctuation marks used
by a language, the largest symbol probability is typically around 15-20%, bringing the
value of the quantity p; + 0.086 to around 0.1. This means that Huffman codes are



64

~ =
~

© I

> =
o 1IN EM—'

] =

oo I

2

o =

] =

o =

1

o

© I S R

Sy I

Qo o

3

2
4]

oo

N\

—
o
[N \)

S I

o 10

4
0]

o I o o

oo

3 4 5
4] 25+31 44 31

3w

5

2

e lwo

5

4
8 9]

o

4
6]

ot

17414 24 14 25 20

4

4

3

NSHEES

Figure 1.38:

24 14 25 20

5

5

o ot o ot

o ot

4

(9] 56+44 56 44

Lo ot

1.

6

6

Basic Codes

7

7

6

DD

5

[ A=

P (=)

o
XD

B (o)

v N

v I

[N

6

[N

SN

v I

v I

[NSREN

NI

v I

8

8

7

ot oo

7

5] 20424 31 24 5 25 2

[S1g[ese] ot oo

Ut |00

DN g0 wlo g loo
Lo ko

o oo

9 10

6

8 9

[N}
(e} Ne)
NS

[N~}
(e} Ne)
NS

[e>RNe)
NS

8

9
0

*; O

Ut oo

=
N=

X O

O

Sifting the Heap.



1.13 Huffman Coding 65

) 9 11
9 11 13 11 13 14

13 17 20 25 25 17 20 25 17 20
13 14 17
17 14 17 24 20 24
25 20 25 20 25
20 24 25 31
24 25 25 31 31 44 44
31
(a)
0 | 1
1
01 0] 1
0] 1 25 0] 1
17 20
5 9 11 13
(b)

Figure 1.39: (a) Heaps. (b) Huffman Code Tree.

Considine’s Law. Whenever one word or letter can change the entire meaning of a
sentence, the probability of an error being made will be in direct proportion to the
embarrassment it will cause.

—Bob Considine
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at most 0.1 bit longer (per symbol) than arithmetic coding. For some (perhaps even
many) applications, such a small difference may be insignificant, but those applications
for which this difference is significant may be important.

Bookstein and Klein examine the two extreme cases of large and small alphabets.
Given a text file in a certain language, it is often compressed in blocks. This limits the
propagation of errors and also provides several entry points into the file. The authors
examine the probabilities of characters of several large alphabets (each consisting of the
letters and punctuations marks of a natural language), and list the average codeword
length for Huffman and arithmetic coding (the latter is the size of the compressed file
divided by the number of characters in the original file). The surprising conclusion is
that the Huffman codewords are longer than the arithmetic codewords by less than one
percent. Also, arithmetic coding performs better than Huffman coding only in large
blocks of text. The minimum block size where arithmetic coding is preferable turns
out to be between 269 and 457 characters. Thus, for shorter blocks, Huffman coding
outperforms arithmetic coding.

The other extreme case is a binary alphabet where one symbol has probability e
and the other has probability 1 — e. If e = 0.5, no method will compress the data. If
the probabilities are skewed, Huffman coding does a bad job. The Huffman codes of the
two symbols are 0 and 1 independent of the symbols’ probabilities. Each code is 1-bit
long, and there is no compression. Arithmetic coding, on the other hand, compresses
such data to its entropy, which is —[elog, e + (1 — €) log, (1 — €)]. This expression tends
to 0 for both small e (close to 0) and for large e (close to 1). However, there is a simple
way to improve the performance of Huffman coding in this case. Simply group several
bits into a word. If we group the bits in 4-bit words, we end up with an alphabet of 16
symbols, where the probabilities are less skewed and the Huffman codes do a better job,
especially because of the Gallager bound.

Another difference between Huffman and arithmetic coding is the case of wrong
probabilities. This is especially important when a compression algorithm employs a
mathematical model to estimate the probabilities of occurrence of individual symbols.
The authors show that, under reasonable assumptions, arithmetic coding is affected by
wrong probabilities more than Huffman coding.

Speed is also an important consideration in many applications. Huffman encoding
is fast. Given a symbol to encode, the symbol is used as a pointer to a code table, the
Huffman code is read from the table, and is appended to the codes-so-far. Huffman
decoding is slower because the decoder has to start at the root of the Huffman code
tree and slide down, guided by the bits of the current codeword, until it reaches a
leaf node, where it finds the symbol. Arithmetic coding, on the other hand, requires
multiplications and divisions, and is therefore slower. (Notice, however, that certain
versions of arithmetic coding, most notably the Q-coder, MQ-coder, and QM-coder,
have been developed specifically to avoid slow operations and are not slow.)

Often, a data compression application requires a certain amount of robustness
against transmission errors. Neither Huffman nor arithmetic coding is robust, but it
is known from long experience that Huffman codes tend to synchronize themselves fairly
quickly following an error, in contrast to arithmetic coding, where an error may prop-
agate to the end of the compressed file. It is also possible to construct resynchronizing
Huffman codes, as shown in Section 3.4.
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The conclusion is that Huffman coding, being fast, simple, and effective, is preferable
to arithmetic coding for most applications. Arithmetic coding is the method of choice
only in cases where the alphabet has skewed probabilities that cannot be redefined.

In Japan, the basic codes are the Civil Code, the Commercial Code,
the Penal Code, and procedural codes such as the Code of
Criminal Procedure and the Code of Civil Procedure.

—Roger E. Meiners, The Legal Environment of Business

(G



2
Advanced Codes

We start this chapter with codes for the integers. This is followed by many types
of variable-length codes that are based on diverse principles, have been developed by
different approaches, and have various useful properties and features.

2.1 VLCs for Integers

Following Elias, it is customary to denote the standard binary representation of the
integer n by B(n). This representation can be considered a code (the beta code), but
it does not satisfy the prefix property (because, for example, 2 = 10, is the prefix of
4 = 1002). The beta code has another disadvantage. Given a set of integers between 0
and n, we can represent each in 1+ |log, n| bits, a fixed-length representation. However,
if the number of integers in the set is not known in advance (or if the largest integer
is unknown), a fixed-length representation cannot be used and the natural solution is
to assign variable-length codes to the integers. Any variable-length codes for integers
should satisfy the following requirements:

1. Given an integer n, its code should be as short as possible and should be con-
structed from the magnitude, length, and bit pattern of n, without the need for any
table lookups or other mappings.

2. Given a bitstream of variable-length codes, it should be easy to decode the next
code and obtain an integer n even if n hasn’t been seen before.

We will see that in many VLCs for integers, part of the binary representation of the
integer is included in the code, and the rest of the code is side information indicating
the length or precision of the encoded integer.

Several codes for the integers are described in the first few sections of this chapter.
Some of them can code only nonnegative integers and others can code only positive
integers. A VLC for positive integers can be extended to encode nonnegative integers
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by incrementing the integer before it is encoded and decrementing the result produced
by decoding. A VLC for arbitrary integers can be obtained by a bijection, a mapping
of the form

-2 2 -3 3 -4 4 -5 5

0 -1 1
1 23 4 5 6 7 8 9 10 11

A function is bijective if it is one-to-one and onto. ‘

Perhaps the simplest variable-length code for integers is the well-known unary code.
The unary code of the positive integer n is constructed as n — 1 bits of 1 followed by a
single 0, or alternatively as n — 1 zeros followed by a single 1 (the three left columns of
Table 2.1). The length of the unary code for the integer n is therefore n bits. The two
rightmost columns of Table 2.1 show how the unary code can be extended to encode
the nonnegative integers (which makes the codes one bit longer). The unary code is
simple to construct and is useful in many applications, but it is not universal. Stone-age
people indicated the integer n by marking n adjacent vertical bars on a stone, which
is why the unary code is sometimes known as a stone-age binary and each of its n or
(n—=1) I’s (or n or (n — 1) zeros) is termed a stone-age bit.

n  Code Reverse Alt. code  Alt. reverse

0 - - 0 1

1 0 1 10 01

2 10 01 110 001

3 110 001 1110 0001

4 1110 0001 11110 00001

5 11110 00001 111110 000001
Stone Age Binary? Table 2.1: Some Unary Codes.

It is easy to see that the unary code satisfies the prefix property, so it is instanta-
neous and can be used as a variable-length code. Since its length L satisfies L = n, we
get 271 = 27" 50 it makes sense to use this code in cases where the input data consists
of integers n with exponential probabilities P(n) ~ 2~™. Given data that lends itself to
the use of the unary code (i.e., a set of integers that satisfy P(n) = 27™), we can assign
unary codes to the integers and these codes will be as good as the Huffman codes with
the advantage that the unary codes are trivial to encode and decode. In general, the
unary code is used as part of other, more sophisticated, variable-length codes.

Example: Table 2.2 lists the integers 1 through 6 with probabilities P(n) = 27",
except that P(6) = 275 a2 276, The table lists the unary codes and Huffman codes for
the six integers, and it is obvious that these codes have the same lengths (except the
code of 6, because this symbol does not have the correct probability).

Every positive number was one of Ramanujan’s personal friends.
—J. E. Littlewood
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n  Prob. Unary Huffman
1 271 0 0
2 272 10 10
3 273 110 110
4 24 1110 1110
5 270 11110 11110
6 275 111110 11111

Table 2.2: Six Unary and Huffman Codes.

2.2 Start-Step-Stop Codes

The unary code is ideal for compressing data that consists of integers n with probabilities
P(n) ~ 27™. If the data to be compressed consists of integers with different probabilities,
it may benefit from one of the general unary codes (also known as start-step-stop codes).
Such a code, proposed by [Fiala and Greene 89|, depends on a triplet (start, step, stop)
of nonnegative integer parameters. A set of such codes is constructed subset by subset
as follows:

1. Set n = 0.

2. Set a = start + n X step.

3. Construct the subset of codes that start with n leading 1’s, followed by a single
intercalary bit (separator) of 0, followed by a combination of a bits. There are 2* such
codes.

4. Increment n by step. If n < stop, go to step 2. If n > stop, issue an error and
stop. If n = stop, repeat steps 2 and 3 but without the single intercalary 0 bit of ste