

Variable-length Codes for Data Compression

ABC

David Salomon

Variable-length Codes
for Data Compression

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number:

Printed on acid-free paper.

c

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Professor David Salomon (emeritus)
Computer Science Department
California State University
Northridge, CA 91330-8281
USA

ISBN 978-1-84628-958-3 e-ISBN 978-1-84628-959-0

email: david.salomon@ csun.edu

© Springer-Verlag London Limited 2007

To the originators and developers of the codes.
Apostolico, Capocelli, Elias, Fenwick, Fraenkel,
Golomb, Huffman, Klein, Pigeon, Rice, Stout,
Tsai, Tunstall, Villasenor, Wang, Wen, Wu,

Yamamoto, and others.

To produce a mighty book, you must choose a mighty theme.

—Herman Melville

Preface
The dates of most of the important historical events are known, but not always very
precisely. We know that Kublai Khan, grandson of Ghengis Khan, founded the Yuan
dynasty in 1280 (it lasted until 1368), but we don’t know precisely (i.e., the month,
day and hour) when this act took place. A notable exception to this state of affairs is
the modern age of telecommunications, a historical era whose birth is known precisely,
up to the minute. On Friday, 24 May 1844, at precisely 9:45 in the morning, Samuel
Morse inaugurated the age of modern telecommunications by sending the first telegraphic
message in his new code. The message was sent over an experimental line funded by
the American Congress from the Supreme Court chamber in Washington, DC to the B
& O railroad depot in Baltimore, Maryland. Taken from the Bible (Numbers 23:23),
the message was “What hath God wrought?” It had been suggested to Morse by Annie
Ellsworth, the young daughter of a friend. It was prerecorded on a paper tape, was sent
to a colleague in Baltimore, and was then decoded and sent back by him to Washington.
An image of the paper tape can be viewed at [morse-tape 06].

Morse was born near Boston and was educated at Yale.
We would expect the inventor of the telegraph (and of such a
sophisticated code) to have been a child prodigy who tinkered
with electricity and gadgets from an early age (the electric
battery was invented when Morse was nine years old). In-
stead, Morse became a successful portrait painter with more
than 300 paintings to his credit. It wasn’t until 1837 that
the 46-year-old Morse suddenly quit his painting career and
started thinking about communications and tinkering with
electric equipment. It is not clear why he made such a drastic
career change at such an age, but it is known that two large,
wall-size paintings that he made for the Capitol building in
Washington, DC were ignored by museum visitors and rejected by congressmen. It may
have been this disappointment that gave us the telegraph and the Morse code.

Given this background, it is easy to imagine how the 53-year-old Samuel Morse
felt on that fateful day, Friday, 24 May 1844, as he sat hunched over his mysterious

viii Preface

apparatus, surrounded by a curious crowd of onlookers, some of whom had only a vague
idea of what he was trying to demonstrate. He must have been very anxious, because
his telegraph project, his career, and his entire future depended on the success of this
one test. The year before, the American Congress awarded him $30,000 to prepare this
historical test and prove the value of the electric telegraph (and thus also confirm the
ingenuity of yankees), and here he is now, dependent on the vagaries of his batteries, on
the new, untested 41-mile-long telegraph line, and on a colleague in Baltimore.

Fortunately, all went well. The friend in Baltimore received the message, decoded
it, and resent it within a few minutes, to the great relief of Morse and to the amazement
of the many congressmen assembled around him.

The Morse code, with its quick dots and dashes (Table 1), was extensively used for
many years, first for telegraphy, and beginning in the 1890s, for early radio communi-
cations. The development of more advanced communications technologies in the 20th
century displaced the Morse code, which is now largely obsolete. Today, it is used for
emergencies, for navigational radio beacons, land mobile transmitter identification, and
by continuous wave amateur radio operators.

A .- N -. 1 .---- Period .-.-.-
B -... O --- 2 ..--- Comma --..--
C -.-. P .--. 3 ...-- Colon ---...
Ch ---- Q --.- 4- Question mark ..--..
D -.. R .-. 5 Apostrophe .----.
E . S ... 6 -.... Hyphen -....-
F ..-. T - 7 --... Dash -..-.
G --. U ..- 8 ---.. Parentheses -.--.-
H V ...- 9 ----. Quotation marks .-..-.
I .. W .-- 0 -----
J .--- X -..-
K -.- Y -.--
L .-.. Z --..
M --

Table 1: The Morse Code for English.

Our interest in the Morse code is primarily with a little-known aspect of this code.
In addition to its advantages for telecommunications, the Morse code is also an early
example of text compression. The various dot-dash codes developed by Morse (and
possibly also by his associate, Alfred Vail) have different lengths, and Morse intuitively
assigned the short codes (a single dot and a single dash) to the letters E and T, the
longer, four dots-dashes, he assigned to Q, X, Y, and Z. The even longer, five dots-
dashes codes, were assigned to the 10 digits, and the longest codes (six dots and dashes)
became those of the punctuation marks. Morse also specified that the signal for error
is eight consecutive dots, in response to which the receiving operator should delete the
last word received.

Preface ix

It is interesting to note that Morse was not the first to think of compression (in
terms of time saving) by means of a code. The well-known Braille code for the blind
was developed by Louis Braille in the 1820s and is still in common use today. It consists
of groups (or cells) of 3 × 2 dots each, embossed on thick paper. Each of the six dots
in a group may be flat or raised, implying that the information content of a group is
equivalent to six bits, resulting in 64 possible groups. The letters, digits, and common
punctuation marks do not require all 64 codes, which is why the remaining groups may
be used to code common words—such as and, for, and of—and common strings of
letters—such as ound, ation, and th.

The Morse code has another feature that makes it relevant to us. Because the
individual codes have different lengths, there must be a way to identify the end of a
code. Morse solved this problem by requiring accurate relative timing. If the duration
of a dot is taken to be one unit, then that of a dash is three units, the space between
the dots and dashes of one character is one unit, the space between characters is three
units, and the interword space is six units (five for automatic transmission). This book
is concerned with the use of variable-length codes to compress digital data. With these
codes, it is important not to have any extra spaces. In fact, there is no such thing as a
space, because computers use only zeros and 1’s. Thus, when a string of data symbols is
compressed by assigning short codes (that are termed “codewords”) to the symbols, the
codewords (whose lengths vary) are concatenated into a long binary string without any
spaces or separators. Such variable-length codes must therefore be designed to allow for
unambiguous reading. Somehow, the decoder should be able to read bits and identify
the end of each codeword. Such codes are referred to as uniquely decodable or uniquely
decipherable (UD).

Variable-length codes have become important in many areas of computer science.
This book is a survey of this important topic. It presents the principles underlying
this type of codes and describes the important classes of variable-length codes. Many
examples illustrate the applications of these codes to data compression. The book is
devoted to the codes, which is why it describes very few actual compression algorithms.
Notice that many important (and some not so important) methods, algorithms, and
techniques for compressing data are described in detail in [Salomon 06].

The term representation is central to our discussion. A number can be represented
in decimal, binary, or any other number base (or number system, see Section 2.18).
Mathematically, a representation is a bijection (or a bijective function) of an infinite,
countable set S1 of strings onto another set S2 of strings (in practice, S2 consists of
binary strings, but it may also be ternary or based on other number systems), such
that any concatenation of any elements of S2 is UD. The elements of S1 are called data
symbols and those of S2 are codewords. Set S1 is an alphabet and set S2 is a code.
An interesting example is the standard binary notation. We normally refer to it as the
binary representation of the integers, but according to the definition above it is not a
representation because it is not UD. It is easy to see, for example, that a string of binary
codewords that starts with 11 can be either two consecutive 1’s or the code of 3.

A function f : X ⇒ Y is said to be bijective, if for every y ∈ Y , there is exactly one
x ∈ X such that f(x) = y.

x Preface

Figure 3.19 and Table 3.22 list several variable-length UD codes assigned to the 26
letters of the English alphabet.

This book is aimed at readers who have a basic knowledge of data compression
and who want to know more about the specific codes used by the various compression
algorithms. The necessary mathematical background includes logarithms, polynomials,
a bit of calculus and linear algebra, and the concept of probability. This book is not
intended as a guide to software implementors and has no programs. Errors, mistypes,
comments, and questions should be sent to the author’s email address below.

It is my pleasant duty to acknowledge the substantial help and encouragement I
have received from Giovanni Motta and Cosmin Truţa and for their painstaking efforts.
They read drafts of the text, found many errors and misprints, and provided valuable
comments and suggestions that improved this book and made it what it is. Giovanni
also wrote part of Section 2.12.

If, by any chance, I have omitted anything more or less proper or necessary, I beg
forgiveness, since there is no one who is without fault and circumspect in all matters.

—Leonardo Fibonacci, Libe Abaci (1202)

dsalomon@csun.edu David Salomon

The Preface is the most important part of
the book. Even reviewers read a preface.

—Philip Guedalla

Contents
Preface vii

Introduction 1

1 Basic Codes 9

1.1 Codes, Fixed- and Variable-Length 9
1.2 Prefix Codes 12
1.3 VLCs, Entropy, and Redundancy 13
1.4 Universal Codes 18
1.5 The Kraft–McMillan Inequality 19
1.6 Tunstall Code 21
1.7 Schalkwijk’s Coding 23
1.8 Tjalkens–Willems V-to-B Coding 28
1.9 Phased-In Codes 31
1.10 Redundancy Feedback (RF) Coding 33
1.11 Recursive Phased-In Codes 37
1.12 Self-Delimiting Codes 40
1.13 Huffman Coding 42

2 Advanced Codes 69

2.1 VLCs for Integers 69
2.2 Start-Step-Stop Codes 71
2.3 Start/Stop Codes 73
2.4 Elias Codes 74
2.5 Levenstein Code 80
2.6 Even–Rodeh Code 81
2.7 Punctured Elias Codes 82
2.8 Other Prefix Codes 83
2.9 Ternary Comma Code 86
2.10 Location Based Encoding (LBE) 87
2.11 Stout Codes 89
2.12 Boldi–Vigna (ζ) Codes 91

xii Contents

2.13 Yamamoto’s Recursive Code 94
2.14 VLCs and Search Trees 97
2.15 Taboo Codes 100
2.16 Wang’s Flag Code 105
2.17 Yamamoto Flag Code 106
2.18 Number Bases 110
2.19 Fibonacci Code 112
2.20 Generalized Fibonacci Codes 116
2.21 Goldbach Codes 120
2.22 Additive Codes 126
2.23 Golomb Code 129
2.24 Rice Codes 136
2.25 Subexponential Code 138
2.26 Codes Ending with “1” 139

3 Robust Codes 143

3.1 Codes For Error Control 143
3.2 The Free Distance 149
3.3 Synchronous Prefix Codes 150
3.4 Resynchronizing Huffman Codes 156
3.5 Bidirectional Codes 159
3.6 Symmetric Codes 168
3.7 VLEC Codes 170
Summary and Unification 177

Bibliography 179

Index 187

An adequate table of contents serves as a synopsis or headline display
of the design or structural pattern of the body of the report.

—D. E. Scates and C. V. Good, Methods of Research

Introduction
The discipline of data compression has its origins in the 1950s and 1960s and has ex-
perienced rapid growth in the 1980s and 1990s. Currently, data compression is a vast
field encompassing many approaches and techniques. A student of this field realizes
quickly that the various compression algorithms in use today are based on and require
knowledge of diverse physical and mathematical concepts and topics, some of which are
included in the following, incomplete list: Fourier transforms, finite automata, Markov
processes, the human visual and auditory systems—statistical terms, distributions, and
concepts—Unicode, XML, convolution, space-filling curves, Voronoi diagrams, interpo-
lating polynomials, Fibonacci numbers, polygonal surfaces, data structures, the Van-
dermonde determinant, error-correcting codes, fractals, the Pascal triangle, fingerprint
identification, and analog and digital video.

Faced with this complexity, I decided to try and classify in this short introduction
most (but not all) of the approaches to data compression in four classes as follows:
(1) block-to-block codes, (2) block-to-variable codes, (3) variable-to-block codes, and
(4) variable-to-variable codes (the term “fixed” is sometimes used instead of “block”).
Other approaches to compression, such as mathematical transforms (orthogonal or
wavelet) and the technique of arithmetic coding, are not covered here. Following is
a short description of each class.

Block-to-block codes constitute a class of techniques that input n bits of raw data
at a time, perform a computation, and output the same number of bits. Such a process
results in no compression; it only transforms the data from its original format to a
format where it becomes easy to compress. Thus, this class consists of transforms. The
discrete wavelet, discrete cosine, and linear prediction are examples of transforms that
are commonly used as the first step in the compression of various types of data. Here is
a short description of linear prediction.

Audio data is common in today’s computers. We all have mp3, FLAC, and other
types of compressed audio files in our computers. A typical lossless audio compression
technique consists of three steps. (1) The original sound is sampled (digitized). (2) The
audio samples are converted, in a process that employs linear prediction, to small
numbers called residues. (3) The residues are replaced by variable-length codes. The

2 Introduction

last step is the only one that produces compression.
Linear prediction of audio samples is based on the fact that most audio samples

are similar to their near neighbors. One second of audio is normally converted to many
thousands of audio samples (44,100 samples per second is typical), and adjacent samples
tend to be similar because sound rarely varies much in pitch or frequency during one
second. If we denote the current audio sample by s(t), then linear prediction computes a
predicted value ŝ(t) from the p immediately-preceding samples by a linear combination
of the form

ŝ(t) =
p∑

i=1

ais(t− i).

Parameter p depends on the specific algorithm and many also be user controlled.
Parameters ai are linear coefficients that are also determined by the algorothm.

If the prediction is done properly, the difference (which is termed residue or residual)
e(t) = s(t)−ŝ(t) will almost always be a small (positive or negative) number, although in
principle it could be about as large as s(t) or −s(t). The difference between the various
linear prediction methods is in the number p of previous samples that they employ and
in the way they determine the linear coefficients ai.

Block-to-variable codes are the most important of the four types discussed here.
Each symbol of the input alphabet is assigned a variable-length code according to its
frequency of occurrence (or, equivalently, its probability) in the data. Compression
is achieved if short codes are assigned to commonly-occurring (high probability) symbols
and long codes are assigned to rare symbols. Many statistical compression methods
employ this type of coding, most notably the Huffman method (Section 1.13). The
difference between the various methods is mostly in how they compute or estimate the
probabilities of individual data symbols. There are three approaches to this problem,
namely static codes, a two-pass algorithm, and adaptive methods.

Static codes. It is possible to construct a set of variable-length codes and perma-
nently assign each code to a data symbol. The result is a static code table that is built
into both encoder and decoder. To construct such a table, the developer has to analyze
large quantities of data and determine the probability of each symbol. For example,
someone who develops a compression method that employs this approach to compress
text, has to start by selecting a number of representative “training” documents, count
the number of times each text character appears in those documents, compute frequen-
cies of occurrence, and use this fixed, static statistical model to assign variable-length
codewords to the individual characters. A compression method based on a static code
table is simple, but the results (the compression ratio for a given text file) depend on
how much the data resembles the statistics of the training documents.

A two-pass algorithm. The idea is to read the input data twice. The first pass simply
counts symbol frequencies and the second pass performs the actual compression by
replacing each data symbol with a variable-length codeword. In between the two passes,
the code table is constructed by utilizing the symbols’ frequencies in the particular
data being compressed (the statistical model is taken from the data itself). Such a
method features very good compression, but is slow because reading a file from an input
device, even a fast disk, is slower than memory-based operations. Also, the code table
is constructed individually for each data file being compressed, so it has to be included

Introduction 3

in the compressed file, for the decoder’s use. This reduces the compression ratio but not
significantly, because a code table typically contains one variable-length code for each
of the 128 ASCII characters or for each of the 256 8-bit bytes, so its total length is only
a few hundred bytes.

An adaptive method starts with an empty code table, or with a tentative table, and
modifies the table as more data is read and processed. Initially, the codes assigned to
the data symbols are inappropriate and are not based on the (unknown) probabilities of
the data symbols. But as more data is read, the encoder acquires better statistics of the
data and exploits it to improve the codes (the statistical model adapts itself gradually
to the data that is being read and compressed). Such a method has to be designed to
permit the decoder to mimic the operations of the encoder and modify the code table
in lockstep with it.

A simple statistical model assigns variable-length codes to symbols based on sym-
bols’ probabilities. It is possible to improve the compression ratio significantly by basing
the statistical model on probabilities of pairs or triplets of symbols (digrams and tri-
grams), instead of probabilities of individual symbols. The result is an n-order statistical
compression method where the previous n symbols are used to predict (i.e., to assign
a probability to) the current symbol. The PPM (prediction by partial matching) and
DMC (dynamic Markov coding) methods are examples of this type of algorithm.

It should be noted that arithmetic coding, an important statistical compression
method, is included in this class, but operates differently. Instead of assigning codes to
individual symbols (bits, ASCII codes, Unicodes, bytes, etc.), it assigns one long code
to the entire input file.

Variable-to-block codes is a term that refers to a large group of compression tech-
niques where the input data is divided into chunks of various lengths and each chunk of
data symbols is encoded by a fixed-size code. The most important members of this group
are run-length encoding and the various LZ (dictionary-based) compression algorithms.

A dictionary-based algorithm saves bits and pieces of the input data in a special
buffer called a dictionary. When the next item is read from the input file, the algorithm
tries to locate it in the dictionary. If the item is found in the dictionary, the algorithm
outputs a token with a pointer to the item plus other information such as the length of
the item. If the item is not in the dictionary, the algorithm adds it to the dictionary
(based on the assumption that once an item has appeared in the input, it is likely that
it will appear again) and outputs the item either in raw format or as a special, literal
token. Compression is achieved if a large item is replaced by a short token. Quite a
few dictionary-based algorithms are currently known. They have been developed by
many scientists and researchers, but are all based on the basic ideas and pioneering
work of Jacob Ziv and Abraham Lempel, described in [Ziv and Lempel 77] and [Ziv and
Lempel 78].

A well-designed dictionary-based algorithm can achieve high compression because a
given item tends to appear many times in a data file. In a text file, for example, the same
words and phrases may appear many times. Words that are common in the language
and phrases that have to do with the topic of the text, tend to appear again and again. If
they are kept in the dictionary, then more and more phrases can be replaced by tokens,
thereby resulting in good compression.

4 Introduction

The differences between the various LZ dictionary methods are in how the dictionary
is organized and searched, in the format of the tokens, in the way the algorithm handles
items not found in the dictionary, and in the various improvements it makes to the basic
method. The many variants of the basic LZ approach employ improving techniques such
as a circular buffer, a binary search tree, variable-length codes or dynamic Huffman
coding to encode the individual fields of the token, and other tricks of the programming
trade. Sophisticated dictionary organization eliminates duplicates (each data symbol is
stored only once in the dictionary, even if it is part of several items), implements fast
search (binary search or a hash table instead of slow linear search), and may discard
unused items from time to time in order to regain space.

The other important group of variable-to-block codes is run-length encoding (RLE).
We know that data can be compressed because the common data representations are
redundant, and one type of redundancy is runs of identical symbols. Text normally
does not feature long runs of identical characters (the only examples that immediately
come to mind are runs of spaces and of periods), but images, especially monochromatic
(black and white) images, may have long runs of identical pixels. Also, an audio file
may have silences, and even one-tenth of second worth of silence typically translates to
4,410 identical audio samples.

A typical run-length encoder identifies runs of the same symbol and replaces each
run with a token that includes the symbol and the length of the run. If the run is shorter
than a token, the raw symbols are output, but the encoder has to make sure that the
decoder can distinguish between tokens and raw symbols.

Since runs of identical symbols are not common in many types of data, run-length
encoding is often only one part of a larger, more sophisticated compression algorithm.

Variable-to-variable codes is the general name used for compression methods that
select variable-length chunks of input symbols and compress each chunk by replacing it
with a variable-length code.

A simple example of variable-to-variable codes is run-length encoding combined
with Golomb codes, especially when the data to be compressed is binary. Imagine a
long string of 0’s and 1’s where one value (say, 0) occurs more often than the other
value. This value is referred to as the more probable symbol (MPS), while the other
value becomes the LPS. Such a string tends to have runs of the MPS and Section 2.23
shows that the Golomb codes are the best candidate to compress such runs. Each run
has a different length, and the various Golomb codewords also have different lengths,
turning this application into an excellent example of variable-to-variable codes.

Other examples of variable-to-variable codes are hybrid methods that consist of
several parts. A hybrid compression program may start by reading a chunk of input and
looking it up in a dictionary. If a match is found, the chunk may be replaced by a token,
which is then further compressed (in another part of the program) by RLE or variable-
length codes (perhaps Huffman or Golomb). The performance of such a program may
not be spectacular, but it may produce good results for many different types of data.
Thus, hybrids tend to be general-purpose algorithms that can deal successfully with
text, images, video, and audio data.

This book starts with several introductory sections (Sections 1.1 through 1.6) that
discuss information theory concepts such as entropy and redundancy, and concepts that

Introduction 5

are used throughout the text, such as prefix codes, complete codes, and universal codes.
The remainder of the text deals mostly with block-to-variable codes, although its

first part deals with the Tunstall codes and other variable-to-block codes. It concen-
trates on the codes themselves, not on the compression algorithms. Thus, the individual
sections describe various variable-length codes and classify them according to their struc-
ture and organization. The main techniques employed to design variable-length codes
are the following:

The phased-in codes (Section 1.9) are a slight extension of fixed-size codes and
may contribute a little to the compression of a set of consecutive integers by changing
the representation of the integers from fixed n bits to either n or n − 1 bits (recursive
phased-in codes are also described).

Self-delimiting codes. These are intuitive variable-length codes—mostly due to
Gregory Chaitin, the originator of algorithmic information theory—where a code signals
its end by means of extra flag bits. The self-delimiting codes of Section 1.12 are inefficient
and are not used in practice.

Prefix codes. Such codes can be read unambiguously (they are uniquely decodable,
or UD codes) from a long string of codewords because they have a special property (the
prefix property) which is stated as follows: Once a bit pattern is assigned as the code
of a symbol, no other codes can start with that pattern. The most common example of
prefix codes are the Huffman codes (Section 1.13). Other important examples are the
unary, start-step-stop, and start/stop codes (Sections 2.2 and 2.3, respectively).

Codes that include their own length. One way to construct a UD code for the
integers is to start with the standard binary representation of an integer and prepend to
it its length L1. The length may also have variable length, so it has to be encoded in some
way or have its length L2 prepended. The length of an integer n equals approximately
log n (where the logarithm base is the same as the number base of n), which is why
such methods are often called logarithmic ramp representations of the integers. The
most common examples of this type of codes are the Elias codes (Section 2.4), but
other types are also presented. They include the Levenstein code (Section 2.5), Eve–
Rodeh code (Section 2.6), punctured Elias codes (Section 2.7), the ternary comma code
(Section 2.9), Stout codes (Section 2.11), Boldi–Vigna (zeta) codes (Section 2.12), and
Yamamoto’s recursive code (Section 2.13).

Suffix codes (codes that end with a special flag). Such codes limit the propagation
of an error and are therefore robust. An error in a codeword affects at most that
codeword and the one or two codewords following it. Most other variable-length codes
sacrifice data integrity to achieve short codes, and are fragile because a single error can
propagate indefinitely through a sequence of concatenated codewords. The taboo codes
of Section 2.15 are UD because they reserve a special string (the taboo) to indicate the
end of the code. Wang’s flag code (Section 2.16) is also included in this category.

Note. The term “suffix code” is ambiguous. It may refer to codes that end with a
special bit pattern, but it also refers to codes where no codeword is the suffix of another
codeword (the opposite of prefix codes). The latter meaning is used in Section 3.5, in
connection with bidirectional codes.

6 Introduction

Flag codes. A true flag code differs from the suffix codes in one interesting aspect.
Such a code may include the flag inside the code, as well as at its right end. The only
example of a flag code is Yamamoto’s code, Section 2.17.

Codes based on special number bases or special number sequences. We normally
use decimal numbers, and computers use binary numbers, but any integer greater than
1 can serve as the basis of a number system and so can noninteger (real) numbers. It is
also possible to construct a sequence of numbers (real or integer) that act as weights
of a numbering system. The most important examples of this type of variable-length
codes are the Fibonacci (Section 2.19), Goldbach (Section 2.21), and additive codes
(Section 2.22).

The Golomb codes of Section 2.23 are designed in a special way. An integer param-
eter m is selected and is used to encode an arbitrary integer n in two steps. In the first
step, two integers q and r (for quotient and remainder) are computed from n such that
n can be fully reconstructed from them. In the second step, q is encoded in unary and
is followed by the binary representation of r, whose length is implied by the parameter
m. The Rice code of Section 2.24 is a special case of the Golomb codes where m is an
integer power of 2. The subexponential code (Section 2.25) is related to the Rice codes.

Codes ending with “1” are the topic of Section 2.26. In such a code, all the code-
words end with a 1, a feature that makes them the natural choice in special applications.

Variable-length codes are designed for data compression, which is why implementors
select the shortest possible codes. Sometimes, however, data reliability is a concern, and
longer codes may help detect and isolate errors. Thus, Chapter 3 discusses robust codes.
Section 3.3 presents synchronous prefix codes. These codes are useful in applications
where it is important to limit the propagation of errors. Bidirectional (or reversible)
codes (Sections 3.5 and 3.6) are also designed for increased reliability by allowing the
decoder to read and identify codewords either from left to right or in reverse.

The following is a short discussion of terms that are commonly used in this book.

Source. A source of data items can be a file stored on a disk, a file that is input
from outside the computer, text input from a keyboard, or a program that generates
data symbols to be compressed or processed in some way. In a memoryless source, the
probability of occurrence of a data symbol does not depend on its context. The term
i.i.d. (independent and identically distributed) refers to a set of sources that have the
same probability distribution and are mutually independent.

Alphabet. This is the set of symbols that an application has to deal with. An
alphabet may consist of the 128 ASCII codes, the 256 8-bit bytes, the two bits, or any
other set of symbols.

Random variable. This is a function that maps the results of random experiments
to numbers. For example, selecting many people and measuring their heights is a ran-
dom variable. The number of occurrences of each height can be used to compute the
probability of that height, so we can talk about the probability distribution of the ran-
dom variable (the set of probabilities of the heights). A special important case is a
discrete random variable. The set of all values that such a variable can assume is finite
or countably infinite.

Introduction 7

Compressed stream (or encoded stream). A compressor (or encoder) compresses
data and generates a compressed stream. This is often a file that is written on a disk
or is stored in memory. Sometimes, however, the compressed stream is a string of bits
that are transmitted over a communications line.

The acronyms MSB and LSB refer to most-significant-bit and least-significant-bit,
respectively.

The notation 1i0j indicates a bit string of i consecutive 1’s followed by j zeros.

Understanding is, after all, what science is all about—and science
is a great deal more than mere mindless computation.

—Roger Penrose, Shadows of the Mind (1996)

1
Basic Codes
The discussion in this chapter starts with codes, prefix codes, and information theory
concepts. This is followed by a description of basic codes such as variable-to-block codes,
phased-in codes, and the celebrated Huffman code.

1.1 Codes, Fixed- and Variable-Length
A code is a symbol that stands for another symbol. At first, this idea seems pointless.
Given a symbol S, what is the use of replacing it with another symbol Y ? However, it
is easy to find many important examples of the use of codes. Here are a few.

Any language and any system of writing are codes. They provide us with symbols
S that we use in order to express our thoughts Y .

Acronyms and abbreviations can be considered codes. Thus, the string IBM is a
symbol that stands for the much longer symbol “International Business Machines” and
the well-known French university École Supérieure D’électricité is known to many simply
as Supélec.

Cryptography is the art and science of obfuscating messages. Before the age of
computers, a message was typically a string of letters and was encrypted by replacing
each letter with another letter or with a number. In the computer age, a message is a
binary string (a bitstring) in a computer, and it is encrypted by replacing it with another
bitstring, normally of the same length.

Error control. Messages, even secret ones, are often transmitted along communica-
tions channels and may become damaged, corrupted, or garbled on their way from trans-
mitter to receiver. We often experience low-quality, garbled telephone conversations.
Even experienced pharmacists often find it difficult to read and understand a hand-
written prescription. Computer data stored on magnetic disks may become corrupted

10 1. Basic Codes

because of exposure to magnetic fields or extreme temperatures. Music and movies
recorded on optical discs (CDs and DVDs) may become unreadable because of scratches.
In all these cases, it helps to augment the original data with error-control codes. Such
codes—formally titled channel codes, but informally known as error-detecting or error-
correcting codes—employ redundancy to detect and even correct, certain types of errors.

ASCII and Unicode. These are character codes that make it possible to store
characters of text as bitstrings in a computer. The ASCII code, which dates back to the
1960s, assigns 7-bit codes to 128 characters including 26 letters (upper- and lowercase),
the 10 digits, certain punctuation marks, and several control characters. The Unicode
project assigns 16-bit codes to many characters, and has a provision for even longer
codes. The long codes make it possible to store and manipulate many thousands of
characters, taken from many languages and alphabets (such as Greek, Cyrillic, Hebrew,
Arabic, and Indic), and including punctuation marks, diacritics, mathematical symbols,
technical symbols, arrows, and dingbats.

The last example illustrates the use of codes in the field of computers and computa-
tions. Mathematically, a code is a mapping. Given an alphabet of symbols, a code maps
individual symbols or strings of symbols to codewords, where a codeword is a string of
bits, a bitstring. The process of mapping a symbol to a codeword is termed encoding
and the reverse process is known as decoding.

Codes can have a fixed or variable length, and can be static or adaptive (dynamic).
A static code is constructed once and never changes. ASCII and Unicode are examples
of such codes. A static code can also have variable length, where short codewords are
assigned to the commonly-occurring symbols. A variable-length, static code is normally
designed based on the probabilities of the individual symbols. Each type of data has
different probabilities and may benefit from a different code. The Huffman method
(Section 1.13) is an example of an excellent variable-length, static code that can be
constructed once the probabilities of all the symbols in the alphabet are known. In
general, static codes that are also variable-length can match well the lengths of individual
codewords to the probabilities of the symbols. Notice that the code table must normally
be included in the compressed file, because the decoder does not know the symbols’
probabilities (the model of the data) and so has no way to construct the codewords
independently.

A dynamic code varies over time, as more and more data is read and processed
and more is known about the probabilities of the individual symbols. The dynamic
(adaptive) Huffman algorithm [Salomon 06] is an example of such a code.

Fixed-length codes are known as block codes. They are easy to implement in soft-
ware. It is easy to replace an original symbol with a fixed-length code, and it is equally
easy to start with a string of such codes and break it up into individual codes that are
then replaced by the original symbols.

There are cases where variable-length codes (VLCs) have obvious advantages. As
their name implies, VLCs are codes that have different lengths. They are also known
as variable-size codes. A set of such codes consists of short and long codewords. The
following is a short list of important applications where such codes are commonly used.

Data compression (or source coding). Given an alphabet of symbols where certain
symbols occur often in messages, while other symbols are rare, it is possible to compress

1.1 Codes, Fixed- and Variable-Length 11

messages by assigning short codes to the common symbols and long codes to the rare
symbols. This is an important application of variable-length codes.

The Morse code for telegraphy, originated in the 1830s by Samuel Morse and Alfred
Vail, employs the same idea. It assigns short codes to commonly-occurring letters (the
code of E is a dot and the code of T is a dash) and long codes to rare letters and
punctuation marks (--.- to Q, --.. to Z, and --..-- to the comma).

Processor design. Part of the architecture of any computer is an instruction set
and a processor that fetches instructions from memory and executes them. It is easy
to handle fixed-length instructions, but modern computers normally have instructions
of different sizes. It is possible to reduce the overall size of programs by designing the
instruction set such that commonly-used instructions are short. This also reduces the
processor’s power consumption and physical size and is especially important in embedded
processors, such as processors designed for digital signal processing (DSP).

Country calling codes. ITU-T recommendation E.164 is an international standard
that assigns variable-length calling codes to many countries such that countries with
many telephones are assigned short codes and countries with fewer telephones are as-
signed long codes. These codes also obey the prefix property (Section 1.2) which means
that once a calling code C has been assigned, no other calling code will start with C.

The International Standard Book Number (ISBN) is a unique number assigned to a
book, to simplify inventory tracking by publishers and bookstores. The ISBN numbers
are assigned according to an international standard known as ISO 2108 (1970). One
component of an ISBN is a country code, that can be between one and five digits long.
This code also obeys the prefix property. Once C has been assigned as a country code,
no other country code will start with C.

VCR Plus+ (also known as G-Code, VideoPlus+, and ShowView) is a prefix,
variable-length code for programming video recorders. A unique number, a VCR Plus+,
is computed for each television program by a proprietary algorithm from the date,
time, and channel of the program. The number is published in television listings in
newspapers and on the Internet. To record a program on a VCR, the number is located
in a newspaper and is typed into the video recorder. This programs the recorder to record
the correct channel at the right time. This system was developed by Gemstar-TV Guide
International [Gemstar 06].

I gave up on new poetry myself thirty years ago, when most of it began to read like
coded messages passing between lonely aliens on a hostile world.

—Russell Baker

12 1. Basic Codes

1.2 Prefix Codes

Encoding a string of symbols ai with VLCs is easy. No special methods or algorithms
are needed. The software reads the original symbols ai one by one and replaces each
ai with its binary, variable-length code ci. The codes are concatenated to form one
(normally long) bitstring. The encoder either includes a table with all the pairs (ai, ci)
or it executes a procedure to compute code ci from the bits of symbol ai.

Decoding is slightly more complex, because of the different lengths of the codes.
When the decoder reads the individual bits of VLCs from a bitstring, it has to know
either how long each code is or where each code ends. This is why a set of variable-length
codes has to be carefully chosen and why the decoder has to be taught about the codes.
The decoder either has to have a table of all the valid codes, or it has to be told how to
identify valid codes.

We start with a simple example. Given the set of four codes a1 = 0, a2 = 01,
a3 = 011, and a4 = 111 we easily encode the message a2a3a3a1a2a4 as the bitstring
01|011|011|0|01|111. This string can be decoded unambiguously, but not easily. When
the decoder inputs a 0, it knows that the next symbol is either a1, a2, or a3, but the
decoder has to input more bits to find out how many 1’s follow the 0 before it can
identify the next symbol. Similarly, given the bitstring 011 . . . 111, the decoder has to
read the entire string and count the number of consecutive 1’s before it finds out how
many 1’s (zero, one, or two 1’s) follow the single 0 at the beginning. We say that such
codes are not instantaneous.

In contrast, the following set of VLCs a1 = 0, a2 = 10, a3 = 110, and a4 = 111
is similar and is also instantaneous. Given a bitstring that consists of these codes,
the decoder reads consecutive 1’s until it has read three 1’s (an a4) or until it has read
another 0. Depending on how many 1’s precede the 0 (zero, one, or two 1’s), the decoder
knows whether the next symbol is a1, a2, or a3. The 0 acts as a separator, which is why
instantaneous codes are also known as comma codes. The rules that drive the decoder
can be considered a finite automaton or a decision tree.

The next example is similar. We examine the set of VLCs a1 = 0, a2 = 10, a3 = 101,
and a4 = 111. Only the code of a3 is different, but a little experimenting shows that
this set of VLCs is bad because it is not uniquely decodable (UD). Given the bitstring
0101111. . . , it can be decoded either as a1a3a4 . . . or a1a2a4

This observation is crucial because it points the way to the construction of large
sets of VLCs. The set of codes above is bad because 10, the code of a2, is also the prefix
of the code of a3. When the decoder reads 10. . . , it often cannot tell whether this is the
code of a2 or the start of the code of a3.

Thus, a useful, practical set of VLCs has to be instantaneous and has to satisfy the
following prefix property. Once a code c is assigned to a symbol, no other code should
start with the bit pattern c. Prefix codes are also referred to as prefix-free codes, prefix
condition codes, or instantaneous codes.

The following results can be proved: (1) A code is instantaneous if and only if it
is a prefix code. (2) The set of UD codes is larger than the set of instantaneous codes
(i.e., there are UD codes that are not instantaneous). (3) There is an instantaneous
variable-length code with codeword lengths Li if and only if there is a UD code with
these codeword lengths.

1.3 VLCs, Entropy, and Redundancy 13

The last of these results indicates that we cannot reduce the average word length of a
variable-length code by using a UD code rather than an instantaneous code. Thus, there
is no loss of compression performance if we restrict our selection of codes to instantaneous
codes.

A UD code that consists of r codewords of lengths li must satisfy the Kraft inequality
(Section 1.5), but this inequality does not require a prefix code. Thus, if a code satisfies
the Kraft inequality it is UD, but if it is also a prefix code, then it is instantaneous.
This feature of a UD code being also instantaneous, comes for free, because there is no
need to add bits to the code and make it longer.

A prefix code (a set of codewords that satisfy the prefix property) is UD. Such a code
is also complete if adding any codeword to it turns it into a non-UD code. A complete
code is the largest UD code, but it also has a downside; it is less robust. If even a single
bit is accidentally modified or deleted (or if a bit is somehow added) during storage or
transmission, the decoder will lose synchronization and the rest of the transmission will
be decoded incorrectly (see the discussion of robust codes in Chapter 3).

While discussing UD and non-UD codes, it is interesting to note that the Morse
code is non-UD (because, for example, the code of I is “..” and the code of H is “....”),
so Morse had to make it UD by requiring accurate relative timing.

1.3 VLCs, Entropy, and Redundancy

Understanding data compression and its codes must start with understanding informa-
tion, because the former is based on the latter. Hence this short section that introduces
a few important concepts from information theory.

Information theory is the creation, in the late 1940s, of Claude
Shannon. Shannon tried to develop means for measuring the
amount of information stored in a symbol without considering
the meaning of the information. He discovered the connection be-
tween the logarithm function and information, and showed that
the information content (in bits) of a symbol with probability p
is − log2 p. If the base of the logarithm is e, then the information
is measured in units called nats. If the base is 3, the information
units are trits, and if the base is 10, the units are referred to as
Hartleys.

Information theory is concerned with the transmission of information from a sender
(termed a source), through a communications channel, to a receiver. The sender and
receiver can be persons or machines and the receiver may, in turn, act as a sender
and send the information it has received to another receiver. The information is sent
in units called symbols (normally bits, but in verbal communications the symbols are
spoken words) and the set of all possible data symbols is an alphabet.

The most important single factor affecting communications is noise in the commu-
nications channel. In verbal communications, this noise is literally noise. When trying
to talk in a noisy environment, we may lose part of the discussion. In electronic com-
munications, the channel noise is caused by imperfect hardware and by factors such

14 1. Basic Codes

as sudden lightning, voltage fluctuations—old, high-resistance wires—sudden surge in
temperature, and interference from machines that generate strong electromagnetic fields.

The presence of noise implies that special codes should be used to increase the reli-
ability of transmitted information. This is referred to as channel coding or, in everyday
language, error-control codes.

The second most important factor affecting communications is sheer volume. Any
communications channel has a limited capacity. It can transmit only a limited number
of symbols per time unit. An obvious way to increase the amount of data transmitted is
to compress it before it is sent (in the source). Methods to compress data are therefore
known as source coding or, in everyday language, data compression. The feature that
makes it possible to compress data is the fact that individual symbols appear in our data
files with different probabilities. One important principle (although not the only one)
used to compress data is to assign variable-length codes to the individual data symbols
such that short codes are assigned to the common symbols.

Two concepts from information theory, namely entropy and redundancy, are needed
in order to fully understand the application of VLCs to data compression.

Roughly speaking, the term “entropy” as defined by Shannon is proportional to
the minimum number of yes/no questions needed to reach the answer to some question.
Another way of looking at entropy is as a quantity that describes how much information
is included in a signal or event. Given a discrete random variable X that can have n
values xi with probabilities Pi, the entropy H(X) of X is defined as

H(X) = −
n∑

i=1

Pi log2 Pi.

A detailed discussion of information theory is outside the scope of this book. In-
terested readers are referred to the many texts on this subject. Here, we will only
show intuitively why the logarithm function plays such an important part in measuring
information.

Imagine a source that emits symbols ai with probabilities pi. We assume that the
source is memoryless, i.e., the probability of a symbol being emitted does not depend on
what has been emitted in the past. We want to define a function I(ai) that will measure
the amount of information gained when we discover that the source has emitted symbol
ai. Function I will also measure our uncertainty as to whether the next symbol will
be ai. Alternatively, I(ai) corresponds to our surprise in finding that the next symbol is
ai. Clearly, our surprise at seeing ai emitted is inversely proportional to the probability
pi (we are surprised when a low-probability symbol is emitted, but not when we notice
a high-probability symbol). Thus, it makes sense to require that function I satisfies the
following conditions:

1. I(ai) is a decreasing function of pi, and returns 0 when the probability of a symbol
is 1. This reflects our feeling that high-probability events convey less information.

2. I(aiaj) = I(ai) + I(aj). This is a result of the source being memoryless and
the probabilities being independent. Discovering that ai was immediately followed by
aj , provided us with the same information as knowing that ai and aj were emitted
independently.

1.3 VLCs, Entropy, and Redundancy 15

Even those with a minimal mathematical background will immediately see that the
logarithm function satisfies the two conditions above. This is the first example of the
relation between the logarithm function and the quantitative measure of information.
The next few paragraphs illustrate other connections between the two.

Consider the case of person A selecting at random an integer N between 1 and
64 and person B having to guess what it is. What is the minimum number of yes/no
questions that are needed for B to guess N? Those familiar with the technique of binary
search know the answer. Using this technique, B should divide the interval 1–64 in two,
and should start by asking “is N between 1 and 32?” If the answer is no, then N is in
the interval 33 to 64. This interval is then divided by two and B’s next question should
be “is N between 33 and 48?” This process continues until the interval selected by B
shrinks to a single number.

It does not take much to see that exactly six questions are necessary to determine
N . This is because 6 is the number of times 64 can be divided in half. Mathematically,
this is equivalent to writing 6 = log2 64, which is why the logarithm is the mathematical
function that quantifies information.

What we call reality arises in the last analysis from the posing of yes/no questions. All
things physical are information-theoretic in origin, and this is a participatory universe.

—John Wheeler

Another approach to the same problem is to consider a nonnegative integer N and
ask how many digits does it take to express it. The answer, of course, depends on N .
The greater N , the more digits are needed. The first 100 nonnegative integers (0 through
99) can be expressed by two decimal digits. The first 1000 such integers can be expressed
by three digits. Again it does not take long to see the connection. The number of digits
required to represent N equals approximately log N . The base of the logarithm is the
same as the base of the digits. For decimal digits, use base 10; for binary digits (bits),
use base 2. If we agree that the number of digits it takes to express N is proportional
to the information content of N , then again the logarithm is the function that gives us
a measure of the information. As an aside, the precise length, in bits, of the binary
representation of a positive integer n is

1 + �log2 n� (1.1)

or, alternatively, �log2(n + 1)�. When n is represented in any other number base b, its
length is given by the same formula, but with the logarithm in base b instead of 2.

Here is another observation that illuminates the relation between the logarithm and
information. A 10-bit string can have 210 = 1024 values. We say that such a string may
contain one of 1024 messages, or that the length of the string is the logarithm of the
number of possible messages the string can convey.

The following example sheds more light on the concept of entropy and will prepare us
for the definition of redundancy. Given a set of two symbols a1 and a2, with probabilities
P1 and P2, respectively, we compute the entropy of the set for various values of the
probabilities. Since P1+P2 = 1, the entropy of the set is−P1 log2 P1−(1−P1) log2(1−P1)
and the results are summarized in Table 1.1.

When P1 = P2, at least one bit is required to encode each symbol, reflecting the
fact that the entropy is at its maximum, the redundancy is zero, and the data cannot be

16 1. Basic Codes

compressed. However, when the probabilities are very different, the minimum number
of bits required per symbol drops significantly. We may not be able to conceive a
compression method that expresses each symbol in just 0.08 bits, but we know that
when P1 = 99%, such compression is theoretically possible.

P1 P2 Entropy
0.99 0.01 0.08
0.90 0.10 0.47
0.80 0.20 0.72
0.70 0.30 0.88
0.60 0.40 0.97
0.50 0.50 1.00

Table 1.1: Probabilities and Entropies of Two Symbols.

In general, the entropy of a set of n symbols depends on the individual probabilities
Pi and is largest when all n probabilities are equal. Data representations often include
redundancies and data can be compressed by reducing or eliminating these redundancies.
When the entropy is at its maximum, the data has maximum information content and
therefore cannot be further compressed. Thus, it makes sense to define redundancy as
a quantity that goes down to zero as the entropy reaches its maximum.

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.

—Claude Shannon (1948)

To understand the definition of redundancy, we start with an alphabet of symbols
ai, where each symbol appears in the data with probability Pi. The data is compressed
by replacing each symbol with an li-bit-long code. The average code length is the sum∑

Pili and the entropy (the smallest number of bits required to represent the symbols)
is

∑
[−Pi log2 Pi]. The redundancy R of the set of symbols is defined as the average

code length minus the entropy. Thus,

R =
∑

i

Pili −
∑

i

[−Pi log2 Pi]. (1.2)

The redundancy is zero when the average code length equals the entropy, i.e., when the
codes are the shortest and compression has reached its maximum.

Given a set of symbols (an alphabet), we can assign binary codes to the individual
symbols. It is easy to assign long codes to symbols, but most practical applications
require the shortest possible codes.

Consider the four symbols a1, a2, a3, and a4. If they appear in our data strings
with equal probabilities (= 0.25), then the entropy of the data is −4(0.25 log2 0.25) = 2.
Two is the smallest number of bits needed, on average, to represent each symbol in this
case. We can simply assign our symbols the four 2-bit codes 00, 01, 10, and 11. Since
the probabilities are equal, the redundancy is zero and the data cannot be compressed
below two bits/symbol.

1.3 VLCs, Entropy, and Redundancy 17

Next, consider the case where the four symbols occur with different probabilities
as shown in Table 1.2, where a1 appears in the data (on average) about half the time,
a2 and a3 have equal probabilities, and a4 is rare. In this case, the data has entropy
−(0.49 log2 0.49+0.25 log2 0.25+0.25 log2 0.25+0.01 log2 0.01) ≈ −(−0.050−0.5−0.5−
0.066) = 1.57. The smallest number of bits needed, on average, to represent each symbol
has dropped to 1.57.

Symbol Prob. Code1 Code2
a1 .49 1 1
a2 .25 01 01
a3 .25 010 000
a4 .01 001 001

Table 1.2: Variable-Length Codes.

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the redundancy
would be R = −1.57 + log2 4 = 0.43. This suggests assigning variable-length codes to
the symbols. Code1 of Table 1.2 is designed such that the most common symbol, a1,
is assigned the shortest code. When long data strings are transmitted using Code1,
the average size (the number of bits per symbol) is 1 × 0.49 + 2 × 0.25 + 3 × 0.25 +
3 × 0.01 = 1.77, which is very close to the minimum. The redundancy in this case
is R = 1.77 − 1.57 = 0.2 bits per symbol. An interesting example is the 20-symbol
string a1a3a2a1a3a3a4a2a1a1a2a2a1a1a3a1a1a2a3a1, where the four symbols occur with
approximately the right frequencies. Encoding this string with Code1 yields the 37 bits:

1|010|01|1|010|010|001|01|1|1|01|01|1|1|010|1|1|01|010|1
(without the vertical bars). Using 37 bits to encode 20 symbols yields an average size of
1.85 bits/symbol, not far from the calculated average size. (The reader should bear in
mind that our examples are short. To obtain results close to the best that’s theoretically
possible, an input stream with at least thousands of symbols is needed.)

However, the conscientious reader may have noticed that Code1 is bad because it
is not a prefix code. Code2, in contrast, is a prefix code and can be decoded uniquely.
Notice how Code2 was constructed. Once the single bit 1 was assigned as the code of a1,
no other codes could start with 1 (they all had to start with 0). Once 01 was assigned
as the code of a2, no other codes could start with 01. This is why the codes of a3 and
a4 had to start with 00. Naturally, they became 000 and 001.

Designing variable-length codes for data compression must therefore take into ac-
count the following two principles: (1) assign short codes to the more frequent symbols
and (2) obey the prefix property. Following these principles produces short, unambiguous
codes, but not necessarily the best (i.e., shortest) ones. In addition to these principles,
an algorithm is needed to generate a set of shortest codes (ones with the minimum av-
erage size). The only input to such an algorithm is the frequencies of occurrence (or
alternatively the probabilities) of the symbols of the alphabet. The well-known Huffman
algorithm (Section 1.13) is such a method. Given a set of symbols whose probabilities
of occurrence are known, this algorithm constructs a set of shortest prefix codes for the

18 1. Basic Codes

symbols. Notice that such a set is normally not unique and there may be several sets of
codes with the shortest length.

The beauty of code is much more akin to the elegance, efficiency and clean lines of
a spiderweb. It is not the chaotic glory of a waterfall, or the pristine simplicity of a
flower. It is an aesthetic of structure, design and order.

—Charles Gordon

Notice that a UD code does not have to be a prefix code. It is possible, for example,
to designate the string 111 as a separator (a comma) to separate individual codewords
of different lengths, provided that no codeword contains 111. Other examples of a non-
prefix, variable-length codes are the C3 code (page 115) and the generalized Fibonacci
C2 code (page 118).

1.4 Universal Codes
Mathematically, a code is a mapping. It maps source symbols into codewords. Math-
ematically, a source of messages is a pair (M,P) where M is a (possibly infinite) set
of messages and P is a function that assigns a nonzero probability to each message.
A message is mapped into a long bitstring whose length depends on the quality of the
code and on the probabilities of the individual symbols. The best that can be done is
to compress a message to its entropy H. A code is universal if it compresses messages
to codewords whose average length is bounded by C1(H + C2) where C1 and C2 are
constants greater than or equal to 1, i.e., an average length that is a constant multiple
of the entropy plus another constant. A universal code with large constants isn’t very
useful. A code with C1 = 1 is called asymptotically optimal.

A Huffman code often performs better than a universal code, but it can be used only
when the probabilities of the symbols are known. In contrast, a universal code can be
used in cases where only the ranking of the symbols’ probabilities is known. If we know
that symbol a5 has the highest probability and a8 has the next largest one, we can assign
the shortest codeword to a5 and the next longer codeword to a8. Thus, universal coding
amounts to ranking of the source symbols. After ranking, the symbol with index 1 has
the largest probability, the symbol with index 2 has the next highest one, and so on.
We can therefore ignore the actual symbols and concentrate on their new indexes. We
can assign one codeword to index 1, another codeword to index 2, and so on, which is
why variable-length codes are often designed to encode integers (Section 2.1). Such a set
of variable-length codes can encode any number of integers with codewords that have
increasing lengths.

Notice also that a set of universal codes is fixed and so doesn’t have to be constructed
for each set of source symbols, a feature that simplifies encoding and decoding. However,
if we know the probabilities of the individual symbols (the probability distribution of
the alphabet of symbols), it becomes possible to tailor the code to the probability, or
conversely, to select a known code whose codewords fit the known probability distribu-
tion. In all cases, the code selected (the set of codewords) must be uniquely decodable
(UD). A non-UD code is ambiguous and therefore useless.

1.5 The Kraft–McMillan Inequality 19

1.5 The Kraft–McMillan Inequality
The Kraft–McMillan inequality is concerned with the existence of a uniquely decodable
(UD) code. It establishes the relation between such a code and the lengths Li of its
codewords.

One part of this inequality, due to [McMillan 56], states that given a UD variable-
length code, with n codewords of lengths Li, the lengths must satisfy the relation

n∑

i=1

2−Li ≤ 1. (1.3)

The other part, due to [Kraft 49], states the opposite. Given a set of n positive integers
(L1, L2, . . . , Ln) that satisfy Equation (1.3), there exists an instantaneous variable-length
code such that the Li are the lengths of its individual codewords.

Together, both parts say that there is an instantaneous variable-length code with
codeword lengths Li if and only if there is a UD code with these codeword lengths. The
two parts do not say that a variable-length code is instantaneous or UD if and only if the
codeword lengths satisfy Equation (1.3). In fact, it is easy to check the three individual
code lengths of the code (0, 01, 011) and verify that 2−1 + 2−2 + 2−3 = 7/8. This code
satisfies the Kraft–McMillan inequality and yet it is not instantaneous, because it is not
a prefix code. Similarly, the code (0, 01, 001) also satisfies Equation (1.3), but is not
UD. A few more comments on this inequality are in order:

If a set of lengths Li satisfies Equation (1.3), then there exist instantaneous and
UD variable-length codes with these lengths. For example (0, 10, 110).

A UD code is not always instantaneous, but there exists an instantaneous code with
the same codeword lengths. For example, code (0, 01, 11) is UD but not instantaneous,
while code (0, 10, 11) is instantaneous and has the same lengths.

The sum of Equation (1.3) corresponds to the part of the complete code tree that
has been used for codeword selection. This is why the sum has to be less than or equal
to 1. This intuitive explanation of the Kraft–McMillan relation is explained in the next
paragraph.

We can gain a deeper understanding of this useful and important inequality by
constructing the following simple prefix code. Given five symbols ai, suppose that we
decide to assign 0 as the code of a1. Now all the other codes have to start with 1. We
therefore assign 10, 110, 1110, and 1111 as the codewords of the four remaining symbols.
The lengths of the five codewords are 1, 2, 3, 4, and 4, and it is easy to see that the sum

2−1 + 2−2 + 2−3 + 2−4 + 2−4 =
1
2

+
1
4

+
1
8

+
2
16

= 1

satisfies the Kraft–McMillan inequality. We now consider the possibility of constructing
a similar code with lengths 1, 2, 3, 3, and 4. The Kraft–McMillan inequality tells us
that this is impossible, because the sum

2−1 + 2−2 + 2−3 + 2−3 + 2−4 =
1
2

+
1
4

+
2
8

+
1
16

20 1. Basic Codes

is greater than 1, and this is easy to understand when we consider the code tree. Starting
with a complete binary tree of height 4, such as the tree of Figure 3.17, it is obvious
that once 0 was assigned as a codeword, we have “used” one half of the tree and all
future codes would have to be selected from the other half of the tree. Once 10 was
assigned, we were left with only 1/4 of the tree. Once 110 was assigned as a codeword,
only 1/8 of the tree remained available for the selection of future codes. Once 1110 has
been assigned, only 1/16 of the tree was left, and that was enough to select and assign
code 1111. However, once we select and assign codes of lengths 1, 2, 3, and 3, we have
exhausted the entire tree and there is nothing left to select the last (4-bit) code from.

The Kraft–McMillan inequality can be related to the entropy by observing that the
lengths Li can always be written as Li = − log2 Pi + Ei, where Ei is simply the amount
by which Li is greater than the entropy (the extra length of code i).

This implies that

2−Li = 2(log2 Pi−Ei) = 2log2 Pi/2Ei = Pi/2Ei .

In the special case where all the extra lengths are the same (Ei = E), the Kraft–McMillan
inequality says that

1 ≥
n∑

i=1

Pi/2E =
∑n

i=1 Pi

2E
=

1
2E

=⇒ 2E ≥ 1 =⇒ E ≥ 0.

An unambiguous code has nonnegative extra length, meaning its length is greater than
or equal to the length determined by its entropy.

Here is a simple example of the use of this inequality. Consider the simple case of
n equal-length binary codewords. The size of each codeword is Li = log2 n, and the
Kraft–McMillan sum is

n∑

1

2−Li =
n∑

1

2− log2 n =
n∑

1

1
n

= 1.

The inequality is satisfied, so such a code is UD.
A more interesting example is the case of n symbols where the first one is compressed

and the second one is expanded. We set L1 = log2 n − a, L2 = log2 n + e, and L3 =
L4 = · · · = Ln = log2 n, where a and e are positive. We show that e > a, which means
that compressing a symbol by a factor a requires expanding another symbol by a larger
factor. We can benefit from this only if the probability of the compressed symbol is
greater than that of the expanded symbol.

n∑

1

2−Li = 2−L1 + 2−L2 +
n∑

3

2− log2 n

= 2− log2 n+a + 2− log2 n−e +
n∑

1

2− log2 n − 2× 2− log2 n

=
2a

n
+

2−e

n
+ 1− 2

n
.

1.6 Tunstall Code 21

The Kraft–McMillan inequality requires that

2a

n
+

2−e

n
+ 1− 2

n
≤ 1, or

2a

n
+

2−e

n
− 2

n
≤ 0,

or 2−e ≤ 2− 2a, implying −e ≤ log2(2− 2a), or e ≥ − log2(2− 2a).
The inequality above implies a ≤ 1 (otherwise, 2 − 2a is negative) but a is also

positive (since we assumed compression of symbol 1). The possible range of values of
a is therefore (0, 1], and in this range e is greater than a, proving the statement above.
(It is easy to see that a = 1→ e ≥ − log2 0 =∞, and a = 0.1→ e ≥ − log2(2− 20.1) ≈
0.10745.)

It can be shown that this is just a special case of a general result that says, given
an alphabet of n symbols, if we compress some of them by a certain factor, then the
others must be expanded by a greater factor.

One of my most productive days was throwing away 1000 lines of code.
—Kenneth Thompson

1.6 Tunstall Code
The main advantage of variable-length codes is their variable lengths. Some codes are
short, others are long, and a clever assignment of codes to symbols can produce compres-
sion. On the downside, variable-length codes are difficult to work with. The encoder has
to construct each code from individual bits and pieces, has to accumulate and append
several such codes in a short buffer, wait until n bytes of the buffer are full of code bits
(where n must be at least 1), write the n bytes onto the output, shift the buffer n bytes,
and keep track of the location of the last bit placed in the buffer. The decoder has to go
through the reverse process. It is definitely easier to deal with fixed-size codes, and the
Tunstall codes described here are an example of how such codes can be designed. The
idea is to construct a set of fixed-size codes, each encoding a variable-length string of
input symbols. As a result, these codes are also known as variable-to-fixed (or variable-
to-block) codes, in contrast to the variable-length codes which are also referred to as
fixed-to-variable.

Imagine an alphabet that consists of two symbols A and B where A is more common.
Given a typical string from this alphabet, we expect substrings of the form AA, AAA,
AB, AAB, and B, but rarely strings of the form BB. We can therefore assign fixed-size
codes to the following five substrings as follows. AA = 000, AAA = 001, AB = 010,
ABA = 011, and B = 100. A rare occurrence of two consecutive Bs will be encoded by
100100, but most occurrences of B will be preceded by an A and will be coded by 010,
011, or 100.

This example is both bad and inefficient. It is bad, because AAABAAB can be
encoded either as the four codes AAA, B, AA, B or as the three codes AA, ABA,
AB; encoding is not unique and may require several passes to determine the shortest
code. This happens because our five substrings don’t satisfy the prefix property. This
example is inefficient because only five of the eight possible 3-bit codes are used. An n-
bit Tunstall code should use all 2n codes. Another point is that our codes were selected

22 1. Basic Codes

without considering the relative frequencies of the two symbols, and as a result we cannot
be certain that this is the best code for our alphabet.

Thus, an algorithm is needed to construct the best n-bit Tunstall code for a given
alphabet of N symbols, and such an algorithm is given in [Tunstall 67]. Given an
alphabet of N symbols, we start with a code table that consists of the symbols. We
then iterate as long as the size of the code table is less than or equal to 2n (the number
of n-bit codes). Each iteration performs the following steps:

Select the symbol with largest probability in the table. Call it S.

Remove S and include the N substrings Sx where x goes over all the N symbols.
This step increases the table size by N − 1 symbols (some of them may be substrings).
Thus, after iteration k, the table size will be N + k(N − 1) elements.

If N + (k + 1)(N − 1) ≤ 2n, perform another iteration (iteration k + 1).

It is easy to see that the elements (symbols and substrings) of the table satisfy the
prefix property and thus ensure unique encodability. If the first iteration adds element
AB to the table, it must have removed element A. Thus, A, the prefix of AB, is not
a code. If the next iteration creates element ABR, then it has removed element AB,
so AB is not a prefix of ABR. This construction also minimizes the average number
of bits per alphabet symbol because of the requirement that each iteration select the
element (or an element) of maximum probability. This requirement is similar to the way
a Huffman code is constructed, and we illustrate it by an example.

(a)

0.343 0.098 0.049
0.14 0.07

0.2 0.1

A

A

A
B C

B C

B
C

(b) (c)

0.49 0.14 0.07
0.2 0.1

A

A
B C

B
C

0.7 0.2 0.1

A
B

C

Figure 1.3: Tunstall Code Example.

Given an alphabet with the three symbols A, B, and C (N = 3), with probabilities
0.7, 0.2, and 0.1, respectively, we decide to construct a set of 3-bit Tunstall codes (thus,
n = 3). We start our code table as a tree with a root and three children (Figure 1.3a).
In the first iteration, we select A and turn it into the root of a subtree with children AA,
AB, and AC with probabilities 0.49, 0.14, and 0.07, respectively (Figure 1.3b). The
largest probability in the tree is that of node AA, so the second iteration converts it to
the root of a subtree with nodes AAA, AAB, and AAC with probabilities 0.343, 0.098,
and 0.049, respectively (Figure 1.3c). After each iteration we count the number of leaves
of the tree and compare it to 23 = 8. After the second iteration there are seven leaves in
the tree, so the loop stops. Seven 3-bit codes are arbitrarily assigned to elements AAA,
AAB, AAC, AB, AC, B, and C. The eighth available code should be assigned to a
substring that has the highest probability and also satisfies the prefix property.

1.7 Schalkwijk’s Coding 23

The average bit length of this code is easily computed as

3
3(0.343 + 0.098 + 0.049) + 2(0.14 + 0.07) + 0.2 + 0.1

= 1.37 bits/symbol.

In general, let pi and li be the probability and length of tree node i. If there are m nodes
in the tree, the average bit length of the Tunstall code is n/

∑m
i=1 pili. The entropy of

our alphabet is −(0.7× log2 0.7 + 0.2× log2 0.2 + 0.1× log2 0.1) = 1.156, so the Tunstall
codes do not provide the best compression.

The tree of Figure 1.3 is referred to as a parse tree, not a code tree. It is complete
in the sense that every interior node has N children. Notice that the total number
of nodes of this tree is 3 × 2 + 1 and in general a(N − 1) + 1. A parse tree defines
a set of substrings over the alphabet (seven substrings in our example) such that any
string of symbols from the alphabet can be broken up (subdivided) into these substrings
(except that the last part may be only a prefix of such a substring) in one way only. The
subdivision is unique because the set of substrings defined by the parse tree is proper,
i.e., no substring is a prefix of another substring.

An important property of the Tunstall codes is their reliability. If one bit becomes
corrupt, only one code will get bad. Normally, variable-length codes are not robust. One
bad bit may corrupt the decoding of the remainder of a long sequence of such codes.
It is possible to incorporate error-control codes in a string of variable-length codes, but
this increases its size and reduces compression.

Section 1.13.1 illustrates how a combination of the Tunstall algorithm with Huffman
coding can improve compression in a two-step, dual tree process.

A major downside of the Tunstall code is that both encoder and decoder have to
store the complete code (the set of substrings of the parse tree).

There are 10 types of people in this world: those who understand binary and those
who don’t.

—Author unknown

1.7 Schalkwijk’s Coding

One of the many contributions of Isaac Newton to mathematics is the well-known bino-
mial theorem. It states

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i,

where the term (
n

i

)
=

n!
i!(n− i)!

is pronounced “n over i” and is referred to as a binomial coefficient.

24 1. Basic Codes

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Figure 1.4: Pascal Triangle.

Blaise Pascal (Section 2.23), a contemporary of Newton, discovered an elegant way
to compute these coefficients without the lengthy calculations of factorials, multiplica-
tions, and divisions. He conceived the famous triangle that now bears his name (Fig-
ure 1.4) and showed that the general element of this triangle is a binomial coefficient.

Quand on voit le style naturel, on est tout ètonnè et ravi, car on s’attendait de
voir un auteur, et on trouve un homme. (When we see a natural style, we are quite
surprised and delighted, for we expected to see an author and we find a man.)

—Blaise Pascal, Pensèes (1670)

The Pascal triangle is an infinite triangular matrix that’s constructed from the
edges inwards. First fill the left and right edges with 1’s, then compute each interior
element as the sum of the two elements directly above it. The construction is simple
and it is trivial to derive an explicit expression for the general element of the triangle
and show that it is a binomial coefficient. Number the rows from 0 starting at the top,
and number the columns from 0 starting on the left. A general element is denoted by(

i
j

)
. Now observe that the top two rows (corresponding to i = 0 and i = 1) consist of

1’s and that every other row can be obtained as the sum of its predecessor and a shifted
version of its predecessor. For example,

1 3 3 1
+ 1 3 3 1

1 4 6 4 1

This shows that the elements of the triangle satisfy

(
i

0

)
=

(
i

i

)
= 1, i = 0, 1, . . . ,

(
i

j

)
=

(
i− 1
j − 1

)
+
(

i− 1
j

)
, i = 2, 3, . . . , j = 1, . . . , (i− 1).

1.7 Schalkwijk’s Coding 25

From this, it is easy to obtain the explicit expression
(

i

j

)
=

(
i− 1
j − 1

)
+
(

i− 1
j

)

=
(i− 1)!

(j − 1)!(i− j)!
+

(i− 1)!
j!(i− 1− j)!

=
j(i− 1)!
j!(i− j)!

+
(i− j)(i− 1)!

j!(i− j)!

=
i!

j!(i− j)!
.

And this is Newton’s binomial coefficient
(

i
j

)
.

The Pascal triangle has many interesting and unexpected properties, some of which
are listed here.

The sum of the elements of row i is 2i.

If the second element of a row is a prime number, all the elements of the row (except
the 1’s) are divisible by it. For example, the elements 7, 21, and 35 of row 7 are divisible
by 7.

Select any diagonal and any number of consecutive elements on it. Their sum will
equal the number on the row below the end of the selection and off the selected diagonal.
For example, 1 + 6 + 21 + 56 = 84.

Select row 7, convert its elements 1, 7, 21, 35, 35, 21, 7, and 1 to the single number
19487171 by concatenating the elements, except that a multidigit element is first carried
over, such that 1, 7, 21, 35,. . .become 1(7+2)(1+3)(5+3) . . . = 1948 This number
equals 117 and this magic-11 property holds for any row.

The third column from the right consists of the triangular numbers 1, 3, 6, 10,. . . .

Select all the odd numbers on the triangle and fill them with black. The result is
the Sierpinski triangle (a well-known fractal).

Other unusual properties can be found in the vast literature that exists on the
Pascal triangle. The following is a quotation from Donald Knuth:

“There are so many relations in Pascal’s triangle, that when someone finds a new
identity, there aren’t many people who get excited about it anymore, except the discov-
erer.”

The Pascal triangle is the basis of the unusual coding scheme described in
[Schalkwijk 72]. This method starts by considering all the finite bit strings of length n
that have exactly w 1’s. The set of these strings is denoted by T (n, w). If a string t
consists of bits t1 through tn, then we define weights w1 through wn as the partial sums

wk =
n∑

i=k

ti.

26 1. Basic Codes

Thus, if t = 010100, then w1 = w2 = 2, w3 = w4 = 1, and w5 = w6 = 0. Notice that w1
always equals w.

We now define, somewhat arbitrarily, a ranking i(t) on the
(

n
w

)
strings in set T (n, w)

by

i(t) =
n∑

k=1

tk

(
n− k

wk

)
.

(The binomial coefficient
(

i
j

)
is defined only for i ≥ j, so we set it to 0 when i < n.) The

rank of t = 010100 becomes

0 + 1
(

6− 2
2

)
+ 0 + 1

(
6− 4

1

)
+ 0 + 0 = 6 + 2 = 8.

It can be shown that the rank of a string t in set T (n, w) is between 0 and
(

n
w

)− 1.
The following table lists the ranking for the

(6
2

)
= 15 strings of set T (6, 2).

0 000011 3 001001 6 010001 9 011000 12 100100
1 000101 4 001010 7 010010 10 100001 13 101000
2 000110 5 001100 8 010100 11 100010 14 110000

The first version of the Schalkwijk coding algorithm is not general. It is restricted to
data symbols that are elements t of T (n, w). We assume that both encoder and decoder
know the values of n and w. The method employs the Pascal triangle to determine the
rank i(t) of each string t, and this rank becomes the code of t. The maximum value
of the rank is

(
n
w

) − 1, so it can be expressed in �log2
(

n
w

)� bits. Thus, this method
compresses each n-bit string (of which w bits are 1’s) to �log2

(
n
w

)� bits.
Consider a source of bits that emits a 0 with probability q and a 1 with probability

p = 1 − q. The entropy of this source is H(p) = −p log2 p − (1 − p) log2(1 − p). In our
strings, p = w/n, so the compression performance of this method is measured by the
ratio

�log2
(

n
w

)�
n

and it can be shown that this ratio approaches H(w/n) when n becomes very large.
(The proof employs the famous Stirling formula n! ≈ √2πn nne−n.)

Figure 1.5a illustrates the operation of both encoder and decoder. Both know the
values of n and w and they construct in the Pascal triangle a coordinate system tilted
as shown in the figure and with its origin at element w of row n of the triangle.

As an example, suppose that (n, w) = (6, 2). This puts the origin at the element 15
as shown in part (a) of the figure. The encoder starts at the origin, reads bits from the
input string, and moves one step in the x direction for each 0 read and one step in the
y direction for each 1 read. In addition, before moving in the y direction, the encoder
saves the next triangle element in the x direction (the one it will not go to). Thus, given
the string 010100, the encoder starts at the origin (15), moves to 10, 4, 3, 1, 1, and 1,
while saving the values 6 (before it moves from 10 to 4) and 2 (before it moves from 3
to 1). The sum 6 + 2 = 8 = 10002 is the 4-bit rank of the input string and it becomes
the encoder’s output.

1.7 Schalkwijk’s Coding 27

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
1 6 15 20 15 6 1

x

x

y

y

1

1

2

2

3
4
5
6

0
0

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
1 6 15 20 15 6 1

(a) (b)

Figure 1.5: First Version.

The decoder also knows the values of n and w, so it constructs the same coordinate
system in the triangle and starts at the origin. Given the 4-bit input 10002 = 8, the
decoder compares it to the next x value 10, and finds that 8 < 10. It therefore moves
in the x direction, to 10, and emits a 0. The input 8 is compared to the next x value
6, but it is not less than 6. The decoder responds by subtracting 8− 6 = 2, moving in
the y direction, to 4, and emitting a 1. The current input, 2, is compared to the next x
value 3, and is found to be smaller. The decoder therefore moves in the x direction, to
3, and emits a 0. When the input 2 is compared to the next x value 2, it is not smaller,
so the decoder: (1) subtracts 2− 2 = 0, (2) moves in the y direction to 1, and (3) emits
a 1. The decoder’s input is now 0, so the decoder finds it smaller than the values on
the x axis. It therefore keeps moving in the x direction, emitting two more zeros until
it reaches the top of the triangle.

A similar variant is shown in Figure 1.5b. The encoder always starts at the apex
of the triangle, moves in the −x direction for each 0 and in the −y direction for each
1, where it also records the value of the next element in the −x direction. Thus, the
two steps in the −y direction in the figure record the values 1 and 3, whose sum 4
becomes the encoded value of string 010100. The decoder starts at 15 and proceeds in
the opposite direction toward the apex. It is not hard to see that it ends up decoding
the string 001010, which is why the decoder’s output in this variant has to be reversed
before it is used.

This version of Schalkwijk coding is restricted to certain bit strings, and is also
block-to-block coding. Each block of n bits is replaced by a block of �log2

(
n
w

)� bits.
The next version is similar, but is variable-to-block coding. We again assume a source
of bits that emits a 0 with probability q and a 1 with probability p = 1− q. A string of
n bits from this source may often have close to pn 1’s and qn zeros, but may sometimes
have different numbers of zeros and 1’s. We select a convenient value for n, a value that
is as large as possible and where both pn and qn are integers or very close to integers.
If p = 1/3, for example, then n = 12 may make sense, because it results in np = 4 and
nq = 8. We again employ the Pascal triangle and take a rectangular block of (pn + 1)
rows and (qn + 1) columns such that the top of the triangle will be at the top-right
corner of the rectangle (Figure 1.6).

As before, we start at the bottom-left corner of the array and read bits from the
source. For each 0 we move a step in the x direction and for each 1 we move in the y
direction. If the next n bits have exactly pn 1’s, we will end up at point “A,” the
top-right corner of the array, and encode n bits as before. If the first n bits happen to

28 1. Basic Codes

 1 1 1 1 1 1 1 1

 8 7 6 5 4 3 2 1

 36 28 21 15 10 6 3 1

120 84 56 35 20 10 4 1

y

x

pn

qn0

1

2

3

1

B A

C

2 3 4 5 6 7

Figure 1.6: Second Version.

have more than pn 1’s, then the top of the array will be reached (after we have read
np 1’s) early, say at point “B,” before we have read n bits. We cannot read any more
source bits, because any 1 would take us outside the array, so we append several dummy
zeros to what we have read, to end up with n bits (of which np are 1’s). This is encoded
as before. Notice that the decoder can mimic this operation. It operates as before, but
stops decoding when it reaches the top boundary. If the first n bits happen to have
many zeros, the encoder will end up at the right boundary of the array, say, at point
“C,” after it has read qn zeros but before it has read n bits. In such a case, the encoder
appends several 1’s, to end up with exactly n bits (of which precisely pn are 1’s), and
encodes as before. The decoder can mimic this operation by simply stopping when it
reaches the right boundary.

Any string that has too many or too few 1’s degrades the compression, because it
encodes fewer than n bits in the same �log2

(
n
pn

)� bits. Thus, the method may not be
very effective, but it is an example of a variable-to-block encoding.

The developer of this method points out that the method can be modified to employ
the Pascal triangle for block-to-variable coding. The value of n is determined and it
remains fixed. Blocks of n bits are encoded and each block is preceded by the number of
1’s it contains. If the block contains w 1’s, it is encoded by the appropriate part of the
Pascal triangle. Thus, each block of n bits may be encoded by a different part of
the triangle, thereby producing a different-length code. The decoder can still work in
lockstep with the encoder, because it first reads the number w of 1’s in a block. Knowing
n and w tells it what part of the triangle to use and how many bits of encoding to read.
It has been pointed out that this variant is similar to the method proposed by [Lynch 66]
and [Davisson 66]. This variant has also been extended by [Lawrence 77], whose block-
to-variable coding scheme is based on a Pascal triangle where the boundary points are
defined in a special way, based on the choice of a parameter S.

1.8 Tjalkens–Willems V-to-B Coding

The little-known variable-to-block coding scheme presented in this section is due to
[Tjalkens and Willems 92] and is an extension of earlier work described in [Lawrence 77].
Like the Schalkwijk’s codes of Section 1.7 and the Lawrence algorithm, this scheme
employs the useful properties of the Pascal triangle. The method is based on the choice
of a positive integer parameter C. Once a value for C has been selected, the authors
show how to construct a set L of M variable-length bitstrings that satisfy the following:

1.8 Tjalkens–Willems V-to-B Coding 29

1. Set L is complete. Given any infinite bitstring (in practice, a string of M or
more bits), L contains a prefix of the string.

2. Set L is proper. No segment in the set is a prefix of another segment.

Once L has been constructed, it is kept in lexicographically-sorted order, so each
string in L has an index between 0 and M − 1. The input to be encoded is a long
bitstring. It is broken up by the encoder into segments of various lengths that are
members of L. Each segment is encoded by replacing it with its index in L. Note that
the index is a (log2 M)-bit number. Thus, if M = 256, each segment is encoded in eight
bits. The main task is to construct set L in such a way that the encoder will be able
to read the input bit by bit, stop when it has read a bit pattern that is a string in L,
and determine the code of the string (its index in L). The theory behind this method is
complex, so only the individual steps and tests are summarized here.

Given a string s of a zeros and b 1’s, we define the function

Q(s) = (a + b + 1)
(

a + b

b

)
.

(The authors show that 1/Q is the probability of string s.) We denote by s−1 the string
s without its last (rightmost) bit. String s is included in set L if it satisfies

Q(s−1) < C ≤ Q(s). (1.4)

The authors selected C = 82 (because this results in the convenient size M = 256).
Once C is known, it is easy to decide whether a given string s with a zeros and b 1’s
is a member of set L (i.e., whether s satisfies Equation (1.4)). If s is in L, then point
(a, b) in the Pascal triangle (i.e., element b of row a, where row and column numbering
starts at 0) is considered a boundary point. Figure 1.7a shows the boundary points
(underlined) for C = 82.

1 12 12 1
1 11 11 1
1 10 10 1
1 9 36 36 9 1
1 8 28 28 8 1
1 7 21 21 7 1
1 6 15 20 15 6 1
1 5 10 10 5
1 4 6 4 1

1

1 3 3 1
1 2 1
1 1
1

1 81 81 1
a b 70 1 1 70

71 1 1 71
72 1 1 72
73 1 1 1 1 73
74 2 1 1 2 74
76 3 1 1 3 76
79 4 1 1 1 4 79
83 5 2 2 5
88 7 4 7 88

83

95 11 11 95
106 22 106
128 128
256

1 1 1 1
a b

(a) (b)

Figure 1.7: (a) Boundary Points. (b) Coding Array.

30 1. Basic Codes

The inner parts of the triangle are not used in this method and can be removed.
Also, The lowest boundary points are located on row 81 and lower parts of the triangle
are not used. If string s is in set L, then we can start at the apex of the triangle, move in
the a direction for each 0 and in the b direction for each 1 in s, and end up at a boundary
point. The figure illustrates this walk for the string 0010001, where the boundary point
reached is 21.

Setting up the partial Pascal triangle of Figure 1.7a is just the first step. The second
step is to convert this triangle to a coding triangle M(a, b) of the same size, where each
walk for a string s can be used to determine the index of s in set L and thus its code.
The authors show that element M(a, b) of this triangle must equal the number of distinct
ways to reach a boundary point after processing a zeros and b 1’s (i.e., after moving a
steps in the a direction and b steps in the b direction). Triangle M(a, b) is constructed
according to

M(a, b) =
{

1, if (a, b) is a boundary point,
M(a + 1, b) + M(a, b + 1), otherwise.

The coding array for C = 82 (constructed from the bottom up) is shown in
Figure 1.7b. Notice that its apex, M(0, 0), equals the total number of strings in L.
Once this triangle is available, both encoding and decoding are simple and are listed
in Figure 1.8a,b. The former inputs individual bits and moves in M(a, b) in the a or b
directions according to the inputs. The end of the current input string is signalled when
a node with a 1 is reached in the coding triangle. For each move in the b direction, the
next element in the a direction (the one that will not be reached) is added to the index.
At the end, the index is the code of the current string. Figure 1.7b shows the moves for
0010001 and how the nodes 95 and 3 are selected and added to become code 98. The
decoder starts with the code of a string in variable index. It compares index to the sum
(I + M(a + 1, b)) and moves in the a or b directions according to the result, generating
one output bit as it moves. Decoding is complete when the decoder reaches a node with
a 1.

index:=0; a:=0; b:=0;
while M(a, b) = 1 do

if next input = 0
then a:=a+1
else index:=index+M(a + 1, b);

b:=b+1
endif

endwhile

I:=0; a:=0; b:=0;
while M(a, b) = 1 do
if index < (I + M(a + 1, b))
then next_output:=0; a:=a+1;
else next_output:=1;

I := I+M(a+1, b); b:=b+1
endif

endwhile

Figure 1.8: (a) Encoding and (b) Decoding.

Extraordinary how mathematics help you. . . .
—Samuel Beckett, Molloy (1951)

1.9 Phased-In Codes 31

1.9 Phased-In Codes

Many of the prefix codes described here were developed for the compression of specific
types of data. These codes normally range from very short to indefinitely long, and they
are suitable for the compression of data where individual symbols have small and large
probabilities. Data where symbols have equal probabilities cannot be compressed by
VLCs and may be assigned fixed-length codes. The codes of this section (also called
phased-in binary codes, see Appendix A-2 in [Bell et al. 90]) constitute a compromise.
A set of phased-in codes consists of codes of two lengths and may contribute a little to
the compression of data where symbols have equal or almost equal probabilities.

Here is an example for the case n = 24. Given a set of 24 symbols a0 through
a23, we first determine that the largest power of 2 in the interval [0, 23] is 16. The first
24 = 16 symbols ai are assigned the codes i + 16. These codes are the 5-bit numbers
16 = 100002 through 31 = 111112. The remaining symbols a16 through a23 are assigned
codes i − 16, resulting in the 4-bit numbers 0 = 00002 through 7 = 01112. The final
result is a set of the sixteen 5-bit codes 10000 through 11111, followed by the eight 4-bit
codes 0000 through 0111.

Decoding is straightforward. First read four bits into T . If T ≤ 7, then the code is
the 4-bit T ; otherwise, read the next bit u and compute the 5-bit code 2T + u.

In general, we assume an alphabet that consists of the n symbols a0, a1, . . . , an−1.
We select the integer m that satisfies 2m ≤ n < 2m+1. The first 2m symbols a0 through
a2m−1 are encoded as the (m+1)-bit numbers i+2m. This results in codes 2m through
2m+1 − 1. The remaining n − 2m symbols a2m through an−1 are encoded as the m-bit
numbers i− 2m. This results in codes 0 through n− 2m.

To decode, read the first m bits into T . If T ≤ n− 2m, then the code is the m-bit
T ; otherwise, read the next bit u and compute the (m + 1)-bit code 2T + u.

The phased-in codes are closely related to the minimal binary code of Section 2.12.
The efficiency of phased-in codes is easy to estimate. The first 2m symbols are

encoded in m + 1 bits each and the remaining n − 2m symbols are encoded in m bits
each. The average number of bits for each of the n symbols is therefore [2m(m + 1) +
(n − 2m)m]/n = (2m/n) + m. Fixed-length (block) codes for the n symbols are m + 1
bits each, so the quantity [(2m/n) + m]/(m + 1) is a good measure of the efficiency of
this code. For n = 2m, this measure equals 1, while for other values of n it is less than
1, as illustrated in Figure 1.9.

One application of these codes is as pointers to a table. Given a table of 1000
entries, pointers to the table are in the interval [0, 999] and are normally ten bits long,
but not all the 1024 10-bit values are needed. If phased-in codes are used to encode the
pointers, they become either 10 or nine bits each, resulting in a small compression of the
set of pointers. It is obvious that 29 ≤ 1000 < 210, so m = 9, resulting in the 512 10-bit
codes 0 + 29 = 512 through 511 + 29 = 1023 and the 488 9-bit codes 512 − 29 = 0 to
999−29 = 487. The average length of a pointer is now (512×10+488×9)/1000 = 9.512
bits.

The application of phased-in codes in this case is effective because the number of
data items is close to 2m+1. In cases where the table size is close to 2m, however, the
phased-in codes are not that efficient. A simple example is a table with 29 + 1 = 513
entries. The value of m is again 9, and the first 512 phased-in codes are the 10-bit

32 1. Basic Codes

0.95

0.90

0.85

1
128 2566416 32 512

Figure 1.9: Efficiency of Phased-In Codes.

g=Table[Plot[((2ˆm/n)+m)/(m+1), {n,2ˆm,2ˆ(m+1)-0.99}], {m,0,8}];
Show[g]

Code for Figure 1.9.

numbers 0 + 29 = 512 through 511 + 29 = 1023. The 513th code is the 9-bit number
512− 29 = 0. The average code size is now (512× 10 + 1× 9)/513 ≈ 9.99 bits.

See [seul.org 06] for a Mathematica notebook to construct phased-in codes.
It is also possible to construct suffix phased-in codes, where the leftmost bit of some

codes is removed if it is a 0 and if its removal does not create any ambiguity. Table 1.10
(where the removed bits are in italics) illustrates an example for the first 24 nonnegative
integers. The fixed-sized representation of these integers requires five bits, but each of
the eight integers 8 through 15 can be represented by only four bits because 5-bit codes
can represent 32 symbols and we have only 24 symbols. A simple check verifies that, for
example, coding the integer 8 as 1000 instead of 01000 does not introduce any ambiguity,
because none of the other 23 codes ends with 1000. One-third of the codewords in this
example are one bit shorter, but if we consider only the 17 integers from 0 to 16, about
half will require four bits instead of five. The efficiency of this code depends on where
n (the number of symbols) is located in the interval [2m, 2m+1 − 1).

00000 00001 00010 00011 00100 00101 00110 00111
01000 01001 01010 01011 01100 01101 01110 01111
10000 10001 10010 10011 10100 10101 10110 10111

Table 1.10: Suffix Phased-In Codes.

The suffix phased-in codes are suffix codes (if c has been selected as a codeword,
no other codeword will end with c). Suffix codes can be considered the complements of
prefix codes and are also mentioned in Section 3.5.

1.10 Redundancy Feedback (RF) Coding 33

1.10 Redundancy Feedback (RF) Coding

The interesting and original method of redundancy feedback (RF) coding is the brain-
child of Eduardo Enrique González Rodŕıguez who hasn’t published it formally. As a
result, information about it is hard to find. At the time of writing (early 2007), there is
a discussion in file new-entropy-coding-algorithm-312899.html at web site
http://archives.devshed.com/forums/compression-130/ and some information (and
source code) can also be obtained from this author.

The method employs phased-in codes, but is different from other entropy coders.
It may perhaps be compared with static arithmetic coding. Most entropy coders assign
variable-length codes to data symbols such that the length of the code for a symbol
is inversely proportional to the symbol’s frequency of occurrence. The RF method, in
contrast, starts by assigning several fixed-length (block) codes to each symbol according
to its probability. The method then associates a phased-in code (that the developer terms
“redundant information”) with each block codeword. Encoding is done in reverse, from
the end of the input stream. Each symbol is replaced by one of its block codes B in such
a way that the phased-in code associated with B is identical to some bits at the start (the
leftmost part) of the compressed stream. Those bits are deleted from the compressed
stream (which generates compression) and B is prepended to it. For example, if the
current block code is 010111 and the compressed stream is 0111|0001010 . . ., then the
result of prepending the code and removing identical bits is 01|0001010

We start with an illustrative example. Given the four symbols A, B, C, and D, with
probabilities 37.5%, 25%, 12.5%, and 25%, respectively, we assign each symbol several
block codes according to its probability. The total number of codes must be a power
of 2, so A is assigned three codes, each of B and D gets two codes, and C becomes
the “owner” of one code, for a total of eight codes. Naturally, the codes are the 3-bit
numbers 0 through 7. Table 1.11a lists the eight codes and their redundant information
(the associated phased-in codes). Thus, e.g., the three codes of A are associated with the
phased-in codes 0, 10, and 11, because these are the codes for n = 3. (Section 1.9 shows
that we have to look for the integer m that satisfies 2m ≤ n < 2m+1. Thus, for n = 3,
m is 1. The first 2m = 2 symbols are assigned the 2-bit numbers 0+2 and 1+2 and the
remaining 3 − 2 symbol is assigned the 1-bit number i − 2m = 2 − 2 = 0.) Similarly,
the two phased-in codes associated with B are 0 and 1. Symbol D is associated with
the same two codes, and the single block code 5 of C has no associated phased-in codes
because there are no phased-in codes for a set of one symbol. Table 1.11b is constructed
similarly and lists 16 4-bit block codes and their associated phased-in codes for the three
symbols A, B, and C with probabilities 0.5, 0.2, and 0.2, respectively.

First, a few words on how to determine the number of codes per symbol from the
number n of symbols and their frequencies fi. Given an input string of F symbols
(from an alphabet of n symbols) such that symbol i appears fi times (so that

∑
fi =

F), we first determine the number of codes. This is simply the power m of 2 that
satisfies 2m−1 < n ≤ 2m. We now multiply each fi by 2m/F . The new sum satisfies∑

fi × 2m/F = 2m. Next, we round each term of this sum to the nearest integer, and
if any is rounded down to zero, we set it to 1. Finally, if the sum of these integers is
slightly different from 2m, we increment (or decrement) each of the largest ones by 1
until the sum equals 2m.

34 1. Basic Codes

Code Symbol Redundant Info

0 A 0/3→ 0
1 A 1/3→ 10
2 A 2/3→ 11
3 B 0/2→ 0
4 B 1/2→ 1
5 C 0/1→ −
6 D 0/2→ 0
7 D 1/2→ 1

Code Symbol Redundant Info

0 0000 A 0/10→ 000
1 0001 A 1/10→ 001
2 0010 A 2/10→ 010
3 0011 A 3/10→ 011
4 0100 A 4/10→ 100
5 0101 A 5/10→ 101
6 0110 A 6/10→ 1100
7 0111 A 7/10→ 1101
8 1000 A 8/10→ 1110
9 1001 A 8/10→ 1111

10 1010 B 0/3→ 0
11 1011 B 1/3→ 10
12 1100 B 2/3→ 11
13 1101 C 0/3→ 0
14 1110 C 1/3→ 10
15 1111 C 2/3→ 11

(a) (b)
Table 1.11: Eight and 16 RF Codes.

As an example, consider a 6-symbol alphabet and an input string of F = 47 symbols,
where the six symbols appear 17, 6, 3, 12, 1, and 8 times. We first determine that
22 < 6 ≤ 23, so we need 8 codes. Multiplying 17×8/47 = 2.89→ 3, 6×8/47 = 1.02→ 1,
3×8/47 = 0.51→ 1, 12×8/47 = 2.04→ 2, 1×8/47 = 0.17→ 0, and 8×8/47 = 1.36→ 1.
The last step is to increase the 0 to 1, and make sure the sum is 8 by decrementing the
largest count, 3, to 2.

The codes of Table 1.11b are now used to illustrate RF encoding. Assume that the
input is the string AABCA. It is encoded from end to start. The last symbol A is easy
to encode as we can use any of its block codes. We therefore select 0000. The next
symbol, C, has three block codes, and we select 13 = 1101. The associated phased-in
code is 0, so we start with 0000, delete the leftmost 0, and prepend 1101, to end up with
1101|000. The next symbol is B and we select block code 12 = 1100 with associated
phased-in code 11. Encoding is done by deleting the leftmost 11 and prepending 1100,
to end up with 1100|01|000. To encode the next A, we select block code 6 = 0110 with
associated phased-in code 1100. Again, we delete 1100 and prepend 0110 to end up with
0110||01|000. Finally, the last (i.e., leftmost) symbol A is reached, for which we select
block code 3 = 0011 (with associated phased-in code 011) and encode by deleting 011
and prepending 0011. The compressed stream is 0011|0||01|000.

The RF encoding principle is simple. Out of all the block codes assigned to the
current symbol, we select the one whose associated phased-in code is identical to the
prefix of the compressed stream. This results in the deletion of the greatest number of
bits and thus in maximum compression.

Decoding is the opposite of encoding. The decoder has access to the table of
block codes and their associated codes (or it starts from the symbols’ probabilities and

1.10 Redundancy Feedback (RF) Coding 35

constructs the table as the encoder does). The compressed stream is 0011001000 and
the first code is the leftmost four bits 0011 = 3→ A. The first decoded symbol is A and
the decoder deletes the 0011 and prepends 011 (the phased-in code associated with 3)
to end up with 011001000. The rest of the decoding is straightforward.

Experiments with this method verify that its performance is generally almost as
good as Huffman coding. The main advantages of RF coding are as follows:

1. It works well with a 2-symbol alphabet. We know that Huffman coding fails in
this situation, even when the probabilities of the symbols are skewed, because it simply
assigns the two 1-bit codes to the symbols. In contrast, RF coding assigns the common
symbol many (perhaps seven or 15) codes, while the rare symbol is assigned only one or
two codes, thereby producing compression even in such a case.

2. The version of RF presented earlier is static. The probabilities of the symbols
have to be known in advance in order for this version to work properly. It is possible to
extend this version to a simple dynamic RF coding, where a buffer holds the most-recent
symbols and code assignment is constantly modified. This version is described below.

3. It is possible to replace the phased-in codes with a simple form of arithmetic
coding. This slows down both encoding and decoding, but results in better compression.

Dynamic RF coding is slower than the static version above, but is more efficient.
Assuming that the probabilities of the data symbols are unknown in advance, this version
of the basic RF scheme is based on a long sliding buffer. The buffer should be long,
perhaps 215 symbols or longer, in order to reflect the true frequencies of the symbols.
A common symbol will tend to appear many times in the buffer and will therefore be
assigned many codes. For example, given the alphabet A, B, C, D, and E, with probabilities
60%, 10%, 10%, 15%, and 5%, respectively, the buffer may, at a certain point in the
encoding, hold the following

raw

←
A B A A B A C A A D A A B A A A C A A D A C A E A A A D A A C A A B A A

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

coded

←

On the left, there is raw (unencoded) text and on the right there is text that has
already been encoded. We can imagine the text being stationary and the buffer sliding to
the left. If the buffer is long enough, the text inside it will reflect the true probabilities of
the symbols and each symbol will have a number of codes proportional to its probability.
At any time, the symbol immediately to the right of the buffer is encoded by selecting
one of its codes in the buffer, and then moving the buffer one symbol to the left. If the
buffer happens to contain no occurrences of the symbol to be encoded, then the code
of all zeros is selected (which is why the codes in the buffer start at 1) and is output,
followed by the raw (normally ASCII) code of the symbol. Notice that sliding the buffer
modifies the codes of the symbols, but the decoder can do this in lockstep with the
encoder. Once a code has been selected for a symbol, the code is prepended to the
compressed stream after its associated phased-in code is used to delete identical bits, as
in the static version.

We illustrate this version with a 4-symbol alphabet and the string ABBACBBBAADA.
We assume a buffer with seven positions (so the codes are between 1 and 7) and
place the buffer initially such that the rightmost A is immediately to its right, thus
ABBA[CBBBAAD]A.

36 1. Basic Codes

The initial buffer position and codes (both the 3-bit RF codes and the associated
phased-in codes) are shown here. Symbol A is immediately to the right of the buffer and
it can be encoded as either 2 or 3. We arbitrarily select 2, ending up with a compressed
stream of 010.

A B B A C B B B A A D A
7 6 5 4 3 2 1
111 110 101 100 011 010 001

1:- 3:2 3:1 3:0 2:1 2:0 1:-

- 11 10 0 1 0 -

The buffer is slid, as shown below, thereby changing all the codes. This is why the
dynamic version is slow. Symbol D is now outside the buffer and must be encoded as the
pair (000, D) because there are no occurrences of D inside the buffer. The compressed
stream becomes 000: 01000100|010.

A B B A C B B B A A D A
7 6 5 4 3 2 1
111 110 101 100 011 010 001

3:2 1:- 3:2 3:1 3:0 3:1 3:0

11 - 11 10 0 10 0

Now comes another A that can be encoded as either 1 or 6. Selecting the 1 also
selects its associated phased-in code 0, so the leftmost 0 is deleted from the compressed
stream and 001 is prepended. The result is 001|00: 01000100|010.

A B B A C B B B A A D A
7 6 5 4 3 2 1
111 110 101 100 011 010 001

4:3 2:1 1:- 4:2 4:1 4:0 2:0

11 1 - 10 01 00 0

The next symbol to be encoded is the third A from the right. The only avail-
able code is 5, which has no associated phased-in code. The output therefore becomes
101|001|00: 01000100|010.

A B B A C B B B A A D A
7 6 5 4 3 2 1
111 110 101 100 011 010 001

5:4 5:3 1:- 1:- 5:2 5:1 5:0

111 110 - - 10 01 00

Next in line is the B. Four codes are available, of which the best choice is 5, with
associated phased-in code 10. The string 101|1|001|00: 01000100|010 is the current out-
put.

A B B A C B B B A A D A
7 6 5 4 3 2 1
111 110 101 100 011 010 001

2:1 4:3 4:2 2:0 1:- 4:1 4:0

1 11 10 0 - 01 00

1.11 Recursive Phased-In Codes 37

Encoding continues in this way even though the buffer is now only partially full.
The next B is encoded with only three Bs in the buffer, and with each symbol encoded,
fewer symbols remain in the buffer. Each time a symbol s is encoded that has no copies
left in the buffer, it is encoded as a pair of code 000 followed by the ASCII code of
s. As the buffer gradually empties, more and more pairs are prepended to the output,
thereby degrading the compression ratio. The last symbol (which is encoded with an
empty buffer) is always encoded as a pair.

Thus, the decoder starts with an empty buffer, and reads the first code (000) which
is followed by the ASCII code of the first (leftmost) symbol. That symbol is shifted into
the buffer, and decoding continues as the reverse of encoding.

1.11 Recursive Phased-In Codes
The recursive phased-in codes were introduced in [Acharya and JáJá 95] and [Acharya
and JáJá 96] as an enhancement to the well-known LZW (Lempel Ziv Welch) compres-
sion algorithm [Salomon 06]. These codes are easily explained in terms of complete
binary trees, although their practical construction may be simpler with the help of cer-
tain recursive formulas conceived by Steven Pigeon.

The discussion in Section 2.18 shows that any positive integer N can be written
uniquely as the sum of certain powers of 2. Thus, for example, 45 is the sum 25 + 23 +
22 + 20. In general, we can write N =

∑s
i=1 2ai , where a1 > a2 > · · · > as ≥ 0 and

s ≥ 1. For N = 45, for example, these values are s = 4 and a1 = 5, a2 = 3, a3 = 2,
and a4 = 0. Once a value for N has been selected and the values of all its powers
ai determined, a set of N variable-length recursive phased-in codes can be constructed
from the tree shown in Figure 1.12. For each power ai, this tree has a subtree that is a
complete binary tree of height ai. The individual subtrees are connected to the root by
2s− 2 edges labeled 0 or 1 as shown in the figure.

a1
a2

a3 as

T1
T2

T3 Ts
complete

complete
binarycomplete

binary tree tree

0

0

0

1

1

1

Figure 1.12: A Tree for Recursive Phased-In Codes.

The tree for N = 45 is shown in Figure 1.13. It is obvious that the complete binary
tree for ai has ai leaves and the entire tree therefore has a total of N leaf nodes. The
codes are assigned by sliding down the tree from the root to each leaf, appending a 0
to the code each time we slide to the left and a 1 each time we slide to the right. Some

38 1. Basic Codes

codes are also shown in the figure. Thus, the 45 recursive phased-in codes for N = 45
are divided into the four sets 0xxxxx, 10xxx, 110xx, and 111, where the x’s stand for
bits. The first set consists of the 32 5-bit combinations prepended by a 0, the second set
includes eight 5-bit codes that start with 10, the third set has four codes, and the last
set consists of the single code 111. As we scan the leaves of each subtree from left to
right, we find that the codewords in each set are in ascending order. Even the codewords
in different sets appear sorted, when scanned from left to right, if we append enough
zeros to each so they all become six bits long. The codes are prefix codes, because, for
example, once a code of the form 0xxxxx has been assigned, no other codes will start
with 0.

0
0 0

11001

10101

011110

1
1

1

111

Figure 1.13: A Tree for N = 45.

In practice, these codes can be constructed in two steps, one trivial and the other
one simple, as follows:

1. (This step is trivial.) Given a positive integer N , determine its powers ai. Given,
for example, 45 = . . . 000101101 we first locate its leftmost 1. The position of this 1
(its distance from the right end) is s. We then scan the bits from right to left while
decrementing an index i from s to 1. Each 1 found designates a power ai.

2. There is no need to actually construct any binary trees. We build the set of
codes for a1 by starting with the prefix 0 and appending to it all the a1-bit numbers.
The set of codes for a2 is similarly built by starting with the prefix 10 and appending
to it all the a2-bit numbers.

In his PhD thesis [Pigeon 01b], Steven Pigeon proposes a recursive formula as an
alternative to the steps above. Following Elias (Section 2.4), we denote by βk(n) the
k-bit binary representation of the integer n. Given N , we find its largest power k, so
N = 2k + b where 0 ≤ b < 2k (k equals a1 above). The N recursive phased-in codes
CN (n) for n = 0, 1, . . . , N − 1 are computed by

CN (n) =

⎧
⎨

⎩

0 : Cb(n), if 0 ≤ n < b,
βk(n), if b = 0,
1 : βk(n− b), otherwise.

1.11 Recursive Phased-In Codes 39

Their lengths LN (n) are given by

LN (n) =

⎧
⎨

⎩

1 + Lb(n), if 0 ≤ n < b,
k, if b = 0,
1 + k, otherwise.

Table 1.14 lists the resulting codes for N = 11, 13, and 18. It is obvious that these
are slightly different from the original codes of Acharya and JáJá. The latter code for
N = 11, for example, consists of the sets 0xxx, 10x, and 11, while Pigeon’s formula
generates the sets 1xxx, 01x, and 00.

n 11 13 18
0 00 00 00
1 010 0100 01
2 011 0101 10000
3 1000 0110 10001
4 1001 0111 10010
5 1010 1000 10011
6 1011 1001 10100
7 1100 1010 10101
8 1101 1011 10110
9 1110 1100 10111

10 1111 1101 11000
11 1110 11001
12 1111 11010
13 11011
14 11100
15 11101
16 11110
17 11111

Table 1.14: Codes for 11, 13, and 18.

The recursive phased-in codes bear a certain resemblance to the start-step-stop
codes of Section 2.2, but a quick glance at Table 2.3 shows the difference between the
two types of codes. A start-step-stop code consists of sets of codewords that start with
0, 10, 110, and so on and get longer and longer, while the recursive phased-in codes
consist of sets that start with the same prefixes but get shorter.

“The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms,” he [Einstein]
maintained. The same principle is at work in Ockham’s razor, in Feynman’s panegyric
upon the atomic doctrine, and in the technique of data compression in information
technology—all three of which extol economy of expression, albeit for different reasons.

—Hans Christian von Baeyer, Information, The New Language of Science (2004)

40 1. Basic Codes

1.12 Self-Delimiting Codes
Before we look at the main classes of VLCs, we list in this short section a few simple
techniques (the first few of which are due to [Chaitin 66]) to construct self-delimiting
codes, codes that have variable lengths and can be decoded unambiguously.

1. Double each bit of the original message, so the message becomes a set of pairs of
identical bits, then append a pair of different bits. Thus, the message 01001 becomes the
bitstring 00|11|00|00|11|01. This is simple but is obviously too long. It is also fragile,
because one bad bit will confuse any decoder (computer or human). A variation of
this technique precedes each bit of the number with an intercalary bit of 1, except the
last bit, which is preceded with a 0. Thus, 01001 become 1̄01̄11̄01̄00̄1. We can also
concentrate the intercalary bits together and have them followed by the number, as in
11110|01001 (which is the number itself preceded by its unary code).

2. Prepare a header with the length of the message and prepend it to the message.
The size of the header depends on the size of the message, so the header should be
made self-delimiting using method 1 above. Thus, the 6-bit message 010011 becomes
the header 00|11|11|00|01 followed by 010011. It seems that the result is still very long
(16 bits to encode six bits), but this is because our message is so short. Given a 1-million
bit message, its length requires 20 bits. The self-delimiting header is therefore 42 bits
long, increasing the length of the original message by 0.0042%.

3. If the message is extremely long (trillions of bits) its header may become too long.
In such a case, we can make the header itself self-delimiting by writing it in raw format
and preceding it with its own header, which is made self-delimiting with method 1.

4. It is now clear that there may be any number of headers. The first header is
made self-delimiting with method 1, and all the other headers are concatenated to it in
raw format. The last component is the (very long) original binary message.

5. A decimal variable-length integer can be represented in base 15 (quindecimal) as
a string of nibbles (groups of four bits each), where each nibble is a base-15 digit (i.e.,
between 0 and 14) and the last nibble contains 16 = 11112. This method is sometimes
referred to as nibble code or byte coding. Table 2.21 lists some examples.

6. A variation on the nibble code is to start with the binary representation of the
integer n (or n− 1), prepend it with zeros until the total number of bits is divisible by
3, break it up into groups of three bits each, and prefix each group with a 0, except the
leftmost (or alternatively, the rightmost) group, which is prepended by a 1. The length
of this code for the integer n is 4�(log2 n)/3�, so it is ideal for a distribution of the form

2−4�(log2 n)/3� ≈ 1
n4/3 . (1.5)

This is a power law distribution with a parameter of 3/4. A natural extension of this
code is to k-bit groups. Such a code fits power law distributions of the form

1
n1+ 1

k

. (1.6)

7. If the data to be compressed consists of a large number of small positive integers,
then a word-aligned packing scheme may provide good (although not the best) compres-
sion combined with fast decoding. The idea is to pack several integers into fixed-size

1.12 Self-Delimiting Codes 41

fields of a computer word. Thus, if the word size is 32 bits, 28 bits may be partitioned
into several k-bit fields while the remaining four bits become a selector that indicates
the value of k.

The method described here is due to [Anh and Moffat 05] who employ it to compress
inverted indexes. The integers they compress are positive and small because they are
differences of consecutive pointers that are in sorted order. The authors describe three
packing schemes, of which only the first, dubbed simple-9, is discussed here.

Simple-9 packs several small integers into 28 bits of a 32-bit word, leaving the
remaining four bits as a selector. If the next 28 integers to be compressed all have
values 1 or 2, then each can fit in one bit, making it possible to pack 28 integers in 28
bits. If the next 14 integers all have values of 1, 2, 3, or 4, then each fits in a 2-bit
field and 14 integers can be packed in 28 bits. At the other extreme, if the next integer
happens to be greater than 214 = 16, 384, then the entire 28 bits must be devoted to it,
and the 32-bit word contains just this integer. The choice of 28 is particularly fortuitous,
because 28 is divisible by 1, 2, 3, 4, 5, 7, 9, 14, and itself. Thus, a 32-bit word packed
in simple-9 may be partitioned in nine ways. Table 1.15 lists these nine partitions and
shows that at most three bits are wasted (in row e).

Number Code Unused
Selector of codes length bits

a 28 1 0
b 14 2 0
c 9 3 1
d 7 4 0
e 5 5 3
f 4 7 0
g 3 9 1
h 2 14 0
i 1 28 0

Table 1.15: Summary of the Simple-9 Code.

Given the 14 integers 4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, and 20, we encode the first
nine integers as c|011|101|000|000|010|100|000|110|000|b and the following five integers
as e|01100|10011|00000|01011|10011|bbb, for a total of 64 bits, where each b indicates an
unused bit. The originators of this method point out that the use of a Golomb code
would have compressed the 14 integers into 58 bits, but the small loss of compression
efficiency of simple-9 is often more than compensated for by the speed of decoding. Once
the leftmost four bit of a 32-bit word are examined and the selector value is determined,
the remaining 28 bits can be unpacked with a few simple operations.

Allocating four bits for the selector is somewhat wasteful, because only nine of the
16 possible values are used, but the flexibility of the simple-9 code is the result of the
many (nine) factors of 28. It is possible to give up one selector value, cut the selector size
to three bits and increase the data segment to 29 bits, but 29 is a prime number, so a
29-bit segment cannot be partitioned into equal-size fields. The authors propose dividing
a 32-bit word into a 2-bit selector and a 30-bit segment for packing data. The integer

42 1. Basic Codes

30 has 10 factors, so a table of the simple-10 code, similar to Table 1.15, would have 10
rows. The selector field, however, can specify only four different values, which is why
the resulting code (not described here) is more complex and is denoted by relative-10
instead of simple-10.

Intercalary: Inserted between other elements or parts; interpolated.

1.13 Huffman Coding

David Huffman (1925–1999)

Being originally from Ohio, it is no wonder that Huffman went to Ohio State University
for his BS (in electrical engineering). What is unusual was his age
(18) when he earned it in 1944. After serving in the United States
Navy, he went back to Ohio State for an MS degree (1949) and then
to MIT, for a PhD (1953, electrical engineering).

That same year, Huffman joined the faculty at MIT. In 1967,
he made his only career move when he went to the University of
California, Santa Cruz as the founding faculty member of the Com-
puter Science Department. During his long tenure at UCSC,
Huffman played a major role in the development of the department
(he served as chair from 1970 to 1973) and he is known for his motto
“my products are my students.” Even after his retirement, in 1994, he remained active
in the department, teaching information theory and signal analysis courses.

Huffman made significant contributions in several areas, mostly information theory
and coding, signal designs for radar and communications, and design procedures for
asynchronous logical circuits. Of special interest is the well-known Huffman algorithm
for constructing a set of optimal prefix codes for data with known frequencies of occur-
rence. At a certain point he became interested in the mathematical properties of “zero
curvature” surfaces, and developed this interest into techniques for folding paper into
unusual sculptured shapes (the so-called computational origami).

Huffman coding is a popular method for compressing data with variable-length
codes. Given a set of data symbols and their frequencies of occurrence (or, equivalently,
their probabilities), the method constructs a set of variable-length codewords with the
shortest average length for the symbols. Huffman coding serves as the basis for several
popular applications implemented on popular platforms. Some programs use just the
Huffman method, while others use it as one step in a multistep compression process.
The Huffman method [Huffman 52] is somewhat similar to the Shannon–Fano method,
proposed independently by Claude Shannon and Robert Fano in the late 1940s ([Shan-
non 48] and [Fano 49]). It generally produces better codes, and like the Shannon–Fano
method, it produces the best code when the probabilities of the symbols are negative
powers of 2. The main difference between the two methods is that Shannon–Fano con-
structs its codes top to bottom (from the leftmost to the rightmost bits), while Huffman
constructs a code tree from the bottom up (builds the codes from right to left).

1.13 Huffman Coding 43

Since its development in 1952 by D. Huffman, this method has been the subject of
intensive research in data compression. The long discussion in [Gilbert and Moore 59]
proves that the Huffman code is a minimum-length code in the sense that no other en-
coding has a shorter average length. An algebraic approach to constructing the Huffman
code is introduced in [Karp 61]. In [Gallager 74], Robert Gallager shows that the redun-
dancy of Huffman coding is at most p1 + 0.086 where p1 is the probability of the most-
common symbol in the alphabet. The redundancy is the difference between the average
Huffman codeword length and the entropy. Given a large alphabet, such as the set of
letters, digits and punctuation marks used by a natural language, the largest symbol
probability is typically around 15–20%, bringing the value of the quantity p1 + 0.086 to
around 0.1. This means that Huffman codes are at most 0.1 bit longer (per symbol)
than an ideal entropy encoder, such as arithmetic coding.

The Huffman algorithm starts by building a list of all the alphabet symbols in
descending order of their probabilities. It then constructs a binary tree, the Huffman
code tree, with a symbol at every leaf, from the bottom up. This is done in steps,
where at each step two symbols with the smallest probabilities are selected, added to
the top of the partial tree, deleted from the list, and replaced with an auxiliary symbol
representing the two original symbols. When the list is reduced to just one auxiliary
symbol (representing the entire alphabet), the tree is complete. The tree is then traversed
to determine the codes of the individual symbols.

This process is best illustrated by an example. Given five symbols with probabilities
as shown in Figure 1.16a, they are paired in the following order:
1. Symbol a4 is combined with a5 and both are replaced by the combined symbol a45,
whose probability is 0.2.
2. Four symbols are left, a1, with probability 0.4, and a2, a3, and a45, with probabilities
0.2 each. We arbitrarily select a3 and a45, combine them, and replace them with the
auxiliary symbol a345, whose probability is 0.4.
3. The three symbols a1, a2, and a345, are now left, with probabilities 0.4, 0.2, and 0.4,
respectively. We arbitrarily select a2 and a345, combine them, and replace them with
the auxiliary symbol a2345, whose probability is 0.6.
4. Finally, we combine the two remaining symbols, a1 and a2345, and replace them with
a12345 with probability 1.

The tree is now complete. It is shown in Figure 1.16a “lying on its side” with its
root on the right and its five leaves on the left. To assign the codes, we arbitrarily assign
a bit of 1 to the top edge, and a bit of 0 to the bottom edge, of every pair of edges.
This results in the codewords 0, 10, 111, 1101, and 1100. The assignments of bits to the
edges is arbitrary.

The average size of this code is 0.4× 1 + 0.2× 2 + 0.2× 3 + 0.1× 4 + 0.1× 4 = 2.2
bits/symbol, but even more importantly, the Huffman code is not unique. Some of the
steps above were chosen arbitrarily, since there were more than two symbols with the
smallest probabilities. Figure 1.16b shows how the same five symbols can be combined
differently to obtain a different Huffman code (11, 01, 00, 101, and 100). The average
size of this code is 0.4× 2 + 0.2× 2 + 0.2× 2 + 0.1× 3 + 0.1× 3 = 2.2 bits/symbol, the
same as the previous code.

Example. Given the eight symbols A, B, C, D, E, F, G, and H with probabilities
1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30, and 12/30, we draw three different Huffman

44 1. Basic Codes

0.4

0.1

0.2

0.2

0.1

0.4

0.1

0.2

0.2

0.1

(a) (b)

a3

a345
a4

a45

a5

a2
a2345

a12345
a1

a3

a4

a5

a2

a23

a45

a1 a145

0.2

0.4

0

0

0

0

0

0

0

0

1

1

1

1

0.2

0.4

0.6

1

1

1
1

1.0 0.6

1.0

Figure 1.16: Two Equivalent Huffman Code Trees.

trees with heights 5 and 6 for these symbols and calculate the average code size for each
tree. Figure 1.17a,b,c shows the three trees. The codes sizes for the trees are

(5 + 5 + 5 + 5·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(5 + 5 + 4 + 4·2 + 4·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(6 + 6 + 5 + 4·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30.

(a)

A B

2

5

8

(b) (c) (d)

A B

2

A B

2

C D

3

C D

3C D

3 D

8
8

FE 5

5

E

5

E

8

G

20

H

10

F

E

A B

2

3

C

G

10

F G

10 F G

10
H

30

3018 H

30

18
H

30

18

Figure 1.17: Huffman Code Trees for Eight Symbols.

As a self-exercise, consider the following question. Figure 1.17d shows another
Huffman tree, with a height of 4, for the eight symbols introduced in the example above.
Explain why this tree is wrong.

The answer is, after adding symbols A, B, C, D, E, F, and G to the tree, we were
left with the three symbols ABEF (with probability 10/30), CDG (with probability

1.13 Huffman Coding 45

8/30), and H (with probability 12/30). The two symbols with lowest probabilities were
ABEF and CDG, so they had to be merged. Instead, symbols CDG and H were merged,
creating a non-Huffman tree.

The leaves of a Huffman code tree correspond to the individual codewords, but
the interior nodes of the tree also play an important part. We already know that the
codewords produced by the tree of Figure 1.16a are 0, 10, 111, 1101, and 1100. Once 0
has been assigned as a codeword, all other codewords must start with 1. Thus, 1 is a
prefix of this code. Once 10 has been selected as a codeword, all the other codewords
must start with 11. Thus, 11 is also a prefix of this code. Similarly, once 111 became a
codeword, 110 became a prefix. Thus, the prefixes of this code are 1, 11, and 110, and
it is easy to see that they correspond to nodes a2345, a345, and a45 respectively. We can
therefore say that the interior nodes of a Huffman code tree correspond to the prefixes
of the code. It is often useful to claim that the root of the tree (node a12345 in our case)
corresponds to the empty prefix, which is sometimes denoted by Λ. The fast Huffman
decoder of Section 1.13.3 is based on the code prefixes.

It turns out that the arbitrary decisions made in constructing the Huffman tree
affect the individual codes but not the average size of the code. Still, we have to answer
the obvious question, which of the different Huffman codes for a given set of symbols
is best? The answer, while not obvious, is simple: the best code is the one with the
smallest variance. The variance of a code measures how much the sizes of the individual
codes deviate from the average size. The variance of code 1.16a is

0.4(1− 2.2)2 + 0.2(2− 2.2)2 + 0.2(3− 2.2)2 + 0.1(4− 2.2)2 + 0.1(4− 2.2)2 = 1.36,

while the variance of code 1.16b is

0.4(2− 2.2)2 + 0.2(2− 2.2)2 + 0.2(2− 2.2)2 + 0.1(3− 2.2)2 + 0.1(3− 2.2)2 = 0.16.

Code 1.16b is therefore preferable (see below). A careful look at the two trees shows
how to select the one we want. In the tree of Figure 1.16a, symbol a45 is combined with
a3, whereas in the tree of 1.16b it is combined with a1. The rule for constructing the
code with the smallest variance is therefore: when there are more than two smallest-
probability nodes, select the ones that are lowest and highest in the tree and combine
them. This will combine symbols of low probability with ones of high probability, thereby
reducing the total variance of the code.

If the encoder simply writes the compressed stream on a file, the variance of the
code makes no difference. A small-variance Huffman code is preferable only in cases
where the encoder transmits the compressed stream, as it is being generated, over a
communications line. In such a case, a code with large variance causes the encoder to
generate bits at a rate that varies all the time. Since the bits have to be transmitted at a
constant rate, the encoder has to use a buffer. Bits of the compressed stream are entered
into the buffer as they are being generated and are moved out of it at a constant rate,
to be transmitted. It is easy to see intuitively that a Huffman code with zero variance
will enter bits into the buffer at a constant rate, so only a short buffer will be needed.
The larger the code variance, the more variable is the rate at which bits enter the buffer,
requiring the encoder to use a larger buffer.

46 1. Basic Codes

The following claim is sometimes found in the literature:
It can be shown that the size of the Huffman code of a symbol
ai with probability Pi is always less than or equal to �− log2 Pi�.

Even though it is often correct, this claim is not true in general. It seems to be a wrong
corollary drawn by some authors from the Kraft–McMillan inequality, Equation (1.3). I
am indebted to Guy Blelloch for pointing this out and also for the example of Table 1.18.
In this example, the size of the Huffman code of a symbol ai is greater than �− log2 Pi�.
The symbol in the second row of the table (indicated by an asterisk) has a 3-bit Huffman
code, but satisfies �− log2 0.3� = �1.737� = 2.

Pi Code − log2 Pi �− log2 Pi�
.01 000 6.644 7

*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table 1.18: A Huffman Code Example.

Note. It seems that the size of a code must also depend on the number n of symbols
(the size of the alphabet). A small alphabet requires just a few codes, so they can all be
short; a large alphabet requires many codes, so some must be long. This being so, how
can we say that the size of the code of symbol ai depends just on its probability Pi?

The explanation is simple. Imagine a large alphabet where all the symbols have
(about) the same probability. Since the alphabet is large, that probability will be small,
resulting in long codes. Imagine the other extreme case, where certain symbols have
high probabilities (and, therefore, short codes). Since the probabilities have to add up
to 1, the remaining symbols will have low probabilities (and, therefore, long codes). We
therefore see that the size of a code depends on the probability, but is indirectly affected
by the size of the alphabet.

Figure 1.19 shows a Huffman code for the 26 letters of the English alphabet (see
also Table 3.13).

As a self-exercise, the reader may calculate the average size, entropy, and variance
of this code.

Example. We present the Huffman codes for equal probabilities. Figure 1.20 shows
Huffman codes for 5, 6, 7, and 8 symbols with equal probabilities. In the case where n is
a power of 2, the codewords are simply the fixed-sized (block) codes of the symbols. In
other cases, the codewords are very close to the block codes. This shows that symbols
with equal probabilities do not benefit from variable-length codes. (This is another way
of saying that random text cannot be compressed.) Table 1.21 shows the codes, their
average sizes and variances.

This example shows that symbols with equal probabilities don’t compress under the
Huffman method. This is understandable, since strings of such symbols normally make
random text, and random text does not compress. There may be special cases where
strings of symbols with equal probabilities are not random and can be compressed. A
good example is the string a1a1 . . . a1a2a2 . . . a2a3a3 . . . in which each symbol appears in

1.13 Huffman Coding 47

 000 E .1300
 0010 T .0900
 0011 A .0800
 0100 O .0800

0101 N .0700
0110 R .0650
0111 I .0650

10000 H .0600
10001 S .0600
10010 D .0400
10011 L .0350
10100 C .0300
10101 U .0300
10110 M .0300
10111 F .0200
11000 P .0200
11001 Y .0200
11010 B .0150
11011 W .0150
11100 G .0150
11101 V .0100
111100 J .0050
111101 K .0050
111110 X .0050

1111110 Q .0025
1111111 Z .0025 .005

.11

.010

.010
.020

.025

.045

.070

.115

.305

.420

.580

.30

.28

.195
1.0

1

1

0
0

1

0

1
0

01

0

1

Figure 1.19: A Huffman Code for the 26-Letter Alphabet.

a long run. This string can be compressed with RLE (run-length encoding, Section 2.23)
but not with Huffman codes.

Notice that the Huffman method cannot be applied to a two-symbol alphabet. In
such an alphabet, one symbol is assigned the code 0 and the other is assigned code 1.
The Huffman method cannot assign to any symbol a codeword shorter than one bit,
so it cannot improve on this simple code. If the original data (the source) consists of
individual bits, such as in the case of a bi-level (monochromatic) image, it is possible
to combine several bits (perhaps four or eight) into a new symbol and pretend that
the alphabet consists of these (16 or 256) symbols. The problem with this approach is
that the original binary data may have certain statistical correlations between the bits,
and some of these correlations would be lost when the bits are combined into symbols.
When a typical bi-level image (a drawing or a diagram) is digitized by scan lines, a
pixel is more likely to be followed by an identical pixel than by the opposite one. We
therefore have a file that can start with either a 0 or a 1 (each has 0.5 probability

48 1. Basic Codes

1

2

3

4

5

6

7

8

1

1

1

0

0

0

1

2

3

4

5

6

1

1

0

0

1

2

3

4

5

6

7

1

1

1

0

0

0

1

2

3

4

5

1

1

0

0

Figure 1.20: Huffman Codes for Equal Probabilities.

Avg.
n p a1 a2 a3 a4 a5 a6 a7 a8 size Var.
5 0.200 111 110 101 100 0 2.6 0.64
6 0.167 111 110 101 100 01 00 2.672 0.2227
7 0.143 111 110 101 100 011 010 00 2.86 0.1226
8 0.125 111 110 101 100 011 010 001 000 3 0

Table 1.21: Huffman Codes for 5–8 Symbols.

1.13 Huffman Coding 49

of being the first bit). A zero is more likely to be followed by another 0 and a 1 by
another 1. Figure 1.22 is a finite-state machine illustrating this situation. If these bits
are combined into, say, groups of eight, the bits inside a group will still be correlated,
but the groups themselves will not be correlated by the original pixel probabilities. If
the input stream contains, e.g., the two adjacent groups 00011100 and 00001110, they
will be encoded independently, ignoring the correlation between the last 0 of the first
group and the first 0 of the next group. Selecting larger groups improves this situation
but increases the number of groups, which implies more storage for the code table and
longer time to calculate the table.

0 1

s

0,50% 1,50%

0,40% 1,60%

1,33%

0,67%

Start

Figure 1.22: A Finite-State Machine.

Note. When the group size increases from s bits to s+n bits, the number of groups
increases exponentially from 2s to 2s+n = 2s × 2n.

A more complex approach to image compression by Huffman coding is to create
several complete sets of Huffman codes. If the group size is, e.g., eight bits, then several
sets of 256 codes are generated. When a symbol S is to be encoded, one of the sets
is selected, and S is encoded using its code in that set. The choice of set depends on the
symbol preceding S.

Example. Given an image with 8-bit pixels where half the pixels have values 127
and the other half have values 128, we analyze the performance of RLE on the individual
bitplanes of such an image, and compare it with what can be achieved with Huffman
coding. The binary value of 127 is 01111111 and that of 128 is 10000000. Half the
pixels in each bitplane will therefore be zeros and the other half will be 1’s. In the worst
case, each bitplane will be a checkerboard, i.e., will have many runs of size one. In such
a case, each run requires a 1-bit code, leading to one codebit per pixel per bitplane,
or eight codebits per pixel for the entire image, resulting in no compression at all. In
comparison, a Huffman code for such an image requires just two codes (since there are
just two pixel values) and they can be one bit each. This leads to one codebit per pixel,
or a compression factor of eight.

1.13.1 Dual Tree Coding
Dual tree coding, an idea due to G. H. Freeman ([Freeman 91] and [Freeman 93]),
combines Tunstall and Huffman coding in an attempt to improve the latter’s performance
for a 2-symbol alphabet. The idea is to use the Tunstall algorithm to extend such an
alphabet from 2 symbols to 2k strings of symbols, and select k such that the probabilities

50 1. Basic Codes

of the strings will be close to negative powers of 2. Once this is achieved, the strings
are assigned Huffman codes and the input stream is compressed by replacing the strings
with these codes. This approach is illustrated here by a simple example.

Given a binary source that emits two symbols a and b with probabilities 0.15 and
0.85, respectively, we try to compress it in four different ways as follows:

1. We apply the Huffman algorithm directly to the two symbols. This simply
assigns the two 1-bit codes 0 and 1 to a and b, so there is no compression.

2. We combine the two symbols to obtain the four 2-symbol strings aa, ab, ba, and
bb, with probabilities 0.0225, 0.1275, 0.1275, and 0.7225, respectively. The four strings
are assigned Huffman codes as shown in Figure 1.23a, and it is obvious that the average
code length is 0.0225 × 3 + 0.1275 × 3 + 0.1275 × 2 + 0.7225 × 1 = 1.4275 bits. On
average, each 2-symbol string is compressed to 1.4275 bits, yielding a compression ratio
of 1.4275/2 ≈ 0.714.

(a) (b) (c)

0

0

0

1

1

1

a

a

b

ba

ba

bb

bba

bba

bbb

bbb

aa ab

ba

bb

.15

.25

.85

.1275 .7225

.50

.1084 .614

Figure 1.23: Dual Tree Coding.

3. We apply Tunstall’s algorithm to obtain the four strings bbb, bba, ba, and a with
probabilities 0.614, 0.1084, 0.1275, and 0.15, respectively. The resulting parse tree is
shown in Figure 1.23b. Tunstall’s method compresses these strings by replacing each
with a 2-bit code. Given a string of 257 bits with these probabilities, we expect the
strings bbb, bba, ba, and a to occur 61, 11, 13, and 15 times, respectively, for a total of
100 strings. Thus, Tunstall’s method compresses the 257 input bits to 2 × 100 = 200
bits, for a compression ratio of 200/257 ≈ 0.778.

4. We now change the probabilities of the four strings above to negative powers
of 2, because these are the best values for the Huffman method. Strings bbb, bba,
ba, and a are thus assigned the probabilities 0.5, 0.125, 0.125, and 0.25, respectively.
The resulting Huffman code tree is shown in Figure 1.23c and it is easy to see that
the 61, 11, 13, and 15 occurrences of these strings will be compressed to a total of
61 × 1 + 11 × 3 + 13 × 3 + 15 × 2 = 163 bits, resulting in a compression ratio of
163/257 ≈ 0.634, much better.

To summarize, applying the Huffman method to a 2-symbol alphabet produces no
compression. Combining the individual symbols in strings as in 2 above or applying the
Tunstall method as in 3, produce moderate compression. In contrast, combining the
strings produced by Tunstall with the codes generated by the Huffman method, results
in much better performance. The dual tree method starts by constructing the Tunstall

1.13 Huffman Coding 51

parse tree and then using its leaf nodes to construct a Huffman code tree. The only
(still unsolved) problem is determining the best value of k. In our example, we iterated
the Tunstall algorithm until we had 22 = 4 strings, but iterating more times may have
resulted in strings whose probabilities are closer to negative powers of 2.

1.13.2 Huffman Decoding
Before starting the compression of a data stream, the compressor (encoder) has to de-
termine the codes. It does that based on the probabilities (or frequencies of occurrence)
of the symbols. The probabilities or frequencies have to be written, as side information,
on the compressed stream, so that any Huffman decompressor (decoder) will be able to
decompress the stream. This is easy, since the frequencies are integers and the proba-
bilities can be written as scaled integers. It normally adds just a few hundred bytes to
the compressed stream. It is also possible to write the variable-length codes themselves
on the stream, but this may be awkward, because the codes have different sizes. It is
also possible to write the Huffman tree on the stream, but this may require more space
than just the frequencies.

In any case, the decoder must know what information is supposed to be at the start
of the stream, read it, and construct the Huffman tree for the alphabet. Only then can
it read and decode the rest of the stream. The algorithm for decoding is simple. Start at
the root and read the first bit off the compressed stream. If it is a 0, follow the bottom
edge of the tree; if it is a 1, follow the top edge. Read the next bit and move another
edge toward the leaves of the tree. When the decoder arrives at a leaf node, it finds the
original, uncompressed code of the symbol (normally its ASCII code), and that code is
emitted by the decoder. The process starts again at the root with the next bit.

This process is illustrated for the five-symbol alphabet of Figure 1.24. The four-
symbol input string a4a2a5a1 is encoded into 1001100111. The decoder starts at the root,
reads the first bit 1, and goes up. The second bit 0 sends it down, as does the third bit.
This brings the decoder to leaf a4, which it emits. It again returns to the root, reads
110, moves up, up, and down, to reach leaf a2, and so on.

1

2

3

4

5

1

1

0

0

Figure 1.24: Huffman Decoding Illustrated.

1.13.3 Fast Huffman Decoding
Decoding a Huffman-compressed file by sliding down the code tree for each symbol is
conceptually simple, but slow. The compressed file has to be read bit by bit and the

52 1. Basic Codes

decoder has to advance a node in the code tree for each bit. The method of this section,
originally conceived by [Choueka et al. 85] but later reinvented by others, uses preset
partial-decoding tables. These tables depend on the particular Huffman code used, but
not on the data to be decoded. The compressed file is read in chunks of k bits each
(where k is normally 8 or 16 but can have other values) and the current chunk is used
as a pointer to a table. The table entry that is selected in this way can decode several
symbols and it also points the decoder to the table to be used for the next chunk.

As an example, consider the Huffman code of Figure 1.16a, where the five codewords
are 0, 10, 111, 1101, and 1100. The string of symbols a1a1a2a4a3a1a5 . . . is compressed
by this code to the string 0|0|10|1101|111|0|1100 We select k = 3 and read this string
in 3-bit chunks 001|011|011|110|110|0 Examining the first chunk, it is easy to see
that it should be decoded into a1a1 followed by the single bit 1 which is the prefix of
another codeword. The first chunk is 001 = 110, so we set entry 1 of the first table (table
0) to the pair (a1a1, 1). When chunk 001 is used as a pointer to table 0, it points to entry
1, which immediately provides the decoder with the two decoded symbols a1a1 and also
directs it to use table 1 for the next chunk. Table 1 is used when a partially-decoded
chunk ends with the single-bit prefix 1. The next chunk is 011 = 310, so entry 3 of
table 1 corresponds to the encoded bits 1|011. Again, it is easy to see that these should
be decoded to a2 and there is the prefix 11 left over. Thus, entry 3 of table 1 should be
(a2, 2). It provides the decoder with the single symbol a2 and also directs it to use table 2
next (the table that corresponds to prefix 11). The next chunk is again 011 = 310, so
entry 3 of table 2 corresponds to the encoded bits 11|011. It is again obvious that these
should be decoded to a4 with a prefix of 1 left over. This process continues until the
end of the encoded input. Figure 1.25 is the simple decoding algorithm in pseudocode.

i←0; output←null;
repeat

j←input next chunk;
(s,i)←Tablei[j];
append s to output;

until end-of-input

Figure 1.25: Fast Huffman Decoding.

Table 1.26 lists the four tables required to decode this code. It is easy to see that
they correspond to the prefixes Λ (null), 1, 11, and 110. A quick glance at Figure 1.16a
shows that these correspond to the root and the four interior nodes of the Huffman code
tree. Thus, each partial-decoding table corresponds to one of the four prefixes of this
code. The number m of partial-decoding tables therefore equals the number of interior
nodes (plus the root) which is one less than the number N of symbols of the alphabet.

Notice that some chunks (such as entry 110 of table 0) simply send the decoder
to another table and do not provide any decoded symbols. Also, there is a tradeoff
between chunk size (and thus table size) and decoding speed. Large chunks speed up
decoding, but require large tables. A large alphabet (such as the 128 ASCII characters
or the 256 8-bit bytes) also requires a large set of tables. The problem with large tables
is that the decoder has to set up the tables after it has read the Huffman codes from the

1.13 Huffman Coding 53

T0 = Λ T1 = 1 T2 = 11 T3 = 110
000 a1a1a1 0 1|000 a2a1a1 0 11|000 a5a1 0 110|000 a5a1a1 0
001 a1a1 1 1|001 a2a1 1 11|001 a5 1 110|001 a5a1 1
010 a1a2 0 1|010 a2a2 0 11|010 a4a1 0 110|010 a5a2 0
011 a1 2 1|011 a2 2 11|011 a4 1 110|011 a5 2
100 a2a1 0 1|100 a5 0 11|100 a3a1a1 0 110|100 a4a1a1 0
101 a2 1 1|101 a4 0 11|101 a3a1 1 110|101 a4a1 1
110 − 3 1|110 a3a1 0 11|110 a3a2 0 110|110 a4a2 0
111 a3 0 1|111 a3 1 11|111 a3 2 110|111 a4 2

Table 1.26: Partial-Decoding Tables for a Huffman Code.

compressed stream and before decoding can start, and this process may preempt any
gains in decoding speed provided by the tables.

To set up the first table (table 0, which corresponds to the null prefix Λ), the
decoder generates the 2k bit patterns 0 through 2k − 1 (the first column of Table 1.26)
and employs the decoding method of Section 1.13.2 to decode each pattern. This yields
the second column of Table 1.26. Any remainders left are prefixes and are converted
by the decoder to table numbers. They become the third column of the table. If no
remainder is left, the third column is set to 0 (use table 0 for the next chunk). Each of
the other partial-decoding tables is set in a similar way. Once the decoder decides that
table 1 corresponds to prefix p, it generates the 2k patterns p|00 . . . 0 through p|11 . . . 1
that become the first column of that table. It then decodes that column to generate the
remaining two columns.

This method was conceived in 1985, when storage costs were considerably higher
than today (early 2007). This prompted the developers of the method to find ways to
cut down the number of partial-decoding tables, but these techniques are less important
today and are not described here.

Truth is stranger than fiction, but this is because fiction is obliged to stick to
probability; truth is not.

—Anonymous

1.13.4 Average Code Size
Figure 1.27a shows a set of five symbols with their probabilities and a typical Huffman
code tree.

Symbol A appears 55% of the time and is assigned a 1-bit code, so it contributes
0.55 ·1 bits to the average code size. Symbol E appears only 2% of the time and is
assigned a 4-bit Huffman code, so it contributes 0.02 ·4 = 0.08 bits to the code size. The
average code size is therefore calculated to be

0.55 · 1 + 0.25 · 2 + 0.15 · 3 + 0.03 · 4 + 0.02 · 4 = 1.7 bits per symbol.

54 1. Basic Codes

A 0.55

B 0.25

C 0.15

D 0.03

E 0.02

0.05

0.2

0.45

1

0.02

0.03

0.05
1

d

(b)

(a)

ad−2

a1

Figure 1.27: Huffman Code Trees.

Surprisingly, the same result is obtained by adding the values of the four internal nodes
of the Huffman code tree 0.05 + 0.2 + 0.45 + 1 = 1.7. This provides a way to compute
the average code size of a set of Huffman codes without any multiplications. Simply
add the values of all the internal nodes of the tree. Table 1.28 (where internal nodes
are shown in italics) illustrates why this works. The left column consists of the values
of all the internal nodes. The right columns show how each internal node is the sum of
some of the leaf nodes. Summing the values in the left column yields 1.7, and summing
the other columns shows that this 1.7 is the sum of the four values 0.02, the four values
0.03, the three values 0.15, the two values 0.25, and the single value 0.55.

This argument can be extended to the general case. It is easy to show that, in a
Huffman-like tree (a tree where each node is the sum of its children), the weighted sum
of the leaves, where the weights are the distances of the leaves from the root, equals
the sum of the internal nodes. (This property has been communicated to me by John
Motil.)

Figure 1.27b shows such a tree, where we assume that the two leaves 0.02 and 0.03
have d-bit Huffman codes. Inside the tree, these leaves become the children of internal
node 0.05, which, in turn, is connected to the root by means of the d− 2 internal nodes

1.13 Huffman Coding 55

.05 = .02+ .03

.20 = .05+ .15 = .02+ .03+ .15

.45 = .20+ .25 = .02+ .03+ .15+ .25
1 .0 = .45+ .55 = .02+ .03+ .15+ .25+ .55

Table 1.28: Composition of Nodes.

0 .05 = = 0.02 + 0.03 + · · ·
a1 = 0 .05 + . . .= 0.02 + 0.03 + · · ·
a2 = a1 + . . .= 0.02 + 0.03 + · · ·
... =
ad−2 = ad−3 + . . .= 0.02 + 0.03 + · · ·
1 .0 = ad−2 + . . .= 0.02 + 0.03 + · · ·
Table 1.29: Composition of Nodes.

a1 through ad−2. Table 1.29 has d rows and shows that the two values 0.02 and 0.03
are included in the various internal nodes exactly d times. Adding the values of all the
internal nodes produces a sum that includes the contributions 0.02 · d + 0.03 · d from
the two leaves. Since these leaves are arbitrary, it is clear that this sum includes similar
contributions from all the other leaves, so this sum is the average code size. Since this
sum also equals the sum of the left column, which is the sum of the internal nodes, it is
clear that the sum of the internal nodes equals the average code size.

Notice that this proof does not assume that the tree is binary. The property illus-
trated here exists for any tree where a node contains the sum of its children.

“It needs compression,” I suggested, cautiously.
—Rudyard Kipling

1.13.5 Number of Codes
Since the Huffman code is not unique, a natural question is how many different codes
are there? Figure 1.30a shows a Huffman code tree for six symbols, from which we can
answer this question in two different ways.

Answer 1. The tree of Figure 1.30a has five interior nodes, and in general, a Huffman
code tree for n symbols has n−1 interior nodes. Each interior node has two edges coming
out of it, labeled 0 and 1. Swapping the two labels produces a different Huffman code
tree, so the total number of different Huffman code trees is 2n−1 (in our example, 25 or
32). The tree of Figure 1.30b, for example, shows the result of swapping the labels of
the two edges of the root. Table 1.31a,b lists the codes generated by the two trees.

Answer 2. The six codes of Table 1.31a can be divided into the four classes 00x,
10y, 01, and 11, where x and y are 1-bit each. It is possible to create different Huffman
codes by changing the first two bits of each class. Since there are four classes, this is
the same as creating all the permutations of four objects, something that can be done
in 4! = 24 ways. In each of the 24 permutations it is also possible to change the values
of x and y in four different ways (since they are bits) so the total number of different
Huffman codes in our six-symbol example is 24× 4 = 96.

The two answers are different because they count different things. Answer 1 counts
the number of different Huffman code trees, while answer 2 counts the number of different
Huffman codes. It turns out that our example can generate 32 different code trees but
only 94 different codes instead of 96. This shows that there are Huffman codes that
cannot be generated by the Huffman method! Table 1.31c shows such an example. A
look at the trees of Figure 1.30 should convince the reader that the codes of symbols 5

56 1. Basic Codes

1

2

3

4

5

6

.11

.12

.13

.14

.24

.26

.11

.12

.13

.14

.24

.26

0

1

0

0
0

0

11

1

1
1

2

3

4

5

6

0

1

0

0
0

0
1

1

1

1

(a) (b)

000 100 000
001 101 001
100 000 010
101 001 011
01 11 10
11 01 11

(a) (b) (c)

Figure 1.30: Two Huffman Code Trees. Table 1.31.

and 6 must start with different bits, but in the code of Table 1.31c they both start with
1. This code is therefore impossible to generate by any relabeling of the nodes of the
trees of Figure 1.30.

1.13.6 Ternary Huffman Codes
The Huffman code is not unique. Moreover, it does not have to be binary! The Huffman
method can easily be applied to codes based on other number systems (m-ary codes).
Figure 1.32a shows a Huffman code tree for five symbols with probabilities 0.15, 0.15,
0.2, 0.25, and 0.25. The average code size is

2×0.25 + 3×0.15 + 3×0.15 + 2×0.20 + 2×0.25 = 2.3 bits/symbol.

Figure 1.32b shows a ternary Huffman code tree for the same five symbols. The tree
is constructed by selecting, at each step, three symbols with the smallest probabilities
and merging them into one parent symbol, with the combined probability. The average
code size of this tree is

2×0.15 + 2×0.15 + 2×0.20 + 1×0.25 + 1×0.25 = 1.5 trits/symbol.

Notice that the ternary codes use the digits 0, 1, and 2.
Example. Given seven symbols with probabilities .02, .03, .04, .04, .12, .26, and

.49, we construct binary and ternary Huffman code trees for them and calculate the
average code size in each case. The two trees are shown in Figure 1.32c,d. The average
code size for the binary Huffman tree is

1×0.49 + 2×0.25 + 5×0.02 + 5×0.03 + 5×.04 + 5×0.04 + 3×0.12 = 2 bits/symbol,

and that of the ternary tree is

1×0.26 + 3×0.02 + 3×0.03 + 3×0.04 + 2×0.04 + 2×0.12 + 1×0.49 = 1.34 trits/symbol.

1.13 Huffman Coding 57

(a)

.15 .15 .20 .15 .15 .20

.50 .25 .25

.25

.45.30.25

.55

1.0

1.0

(b)

(c) (d)

.02 .03 .04 .02 .03 .04

.09 .04 .12

.26 .25 .49

.04

.08

.13 .12

.25.26

.51.49

1.0

1.0

.05

Figure 1.32: Binary and Ternary Huffman Code Trees.

1.13.7 Height of a Huffman Tree
The height of the code tree generated by the Huffman algorithm may sometimes be
important because the height is also the length of the longest code in the tree. The
popular Deflate method, for example, limits the lengths of certain Huffman codes to
just 15 bits (because they have to fit in a 16-bit memory word or register).

It is easy to see that the shortest Huffman tree is created when the symbols have
equal probabilities. If the symbols are denoted by A, B, C, and so on, then the algorithm
combines pairs of symbols, such A and B, C and D, in the lowest level, and the rest of the
tree consists of interior nodes as shown in Figure 1.33a. The tree is balanced or close
to balanced and its height is �log2 n�. In the special case where the number of symbols
n is a power of 2, the height is exactly log2 n. In order to generate the tallest tree, we

58 1. Basic Codes

need to assign probabilities to the symbols such that each step in the Huffman method
will increase the height of the tree by 1. Recall that each step in the Huffman algorithm
combines two symbols. Thus, the tallest tree is obtained when the first step combines
two of the n symbols and each subsequent step combines the result of its predecessor
with one of the remaining symbols (Figure 1.33b). The height of the final code tree is
therefore n− 1, and it is referred to as a lopsided or unbalanced tree.

It is easy to see what symbol probabilities result in such a tree. Denote the two
smallest probabilities by a and b. They are combined in the first step to form a node
whose probability is a + b. The second step will combine this node with an original
symbol if one of the symbols has probability a + b (or smaller) and all the remaining
symbols have greater probabilities. Thus, after the second step, the root of the tree
has probability a + b + (a + b) and the third step will combine this root with one of
the remaining symbols if its probability is a + b + (a + b) and the probabilities of the
remaining n− 4 symbols are greater. It does not take much to realize that the symbols
have to have probabilities p1 = a, p2 = b, p3 = a+b = p1 +p2, p4 = b+(a+b) = p2 +p3,
p5 = (a + b) + (a + 2b) = p3 + p4, p6 = (a + 2b) + (2a + 3b) = p4 + p5, and so on
(Figure 1.33c). These probabilities form a Fibonacci sequence (Section 2.18) whose first
two elements are a and b. As an example, we select a = 5 and b = 2 and generate the
5-number Fibonacci sequence 5, 2, 7, 9, and 16. These five numbers add up to 39, so
dividing them by 39 produces the five probabilities 5/39, 2/39, 7/39, 9/39, and 15/39.
The Huffman tree generated by them has a maximal height (which is 4).

000 001 010 011 100 101 110 111

(a) (b) (c)

a+b

a+2b
2a+3b

3a+5b
5a+8b

a b

0

10

110

1110

11110 11111

Figure 1.33: Shortest and Tallest Huffman Trees.

In principle, symbols in a set can have any probabilities, but in practice, the proba-
bilities of symbols in an input file are computed by counting the number of occurrences
of each symbol. Imagine a text file where only the nine symbols A through I appear.
In order for such a file to produce the tallest Huffman tree, where the codes will have
lengths from 1 to 8 bits, the frequencies of occurrence of the nine symbols have to form a
Fibonacci sequence of probabilities. This happens when the frequencies of the symbols
are 1, 1, 2, 3, 5, 8, 13, 21, and 34 (or integer multiples of these). The sum of these
frequencies is 88, so our file has to be at least that long in order for a symbol to have
8-bit Huffman codes. Similarly, if we want to limit the sizes of the Huffman codes of a
set of n symbols to 16 bits, we need to count frequencies of at least 4180 symbols. To
limit the code sizes to 32 bits, the minimum data size is 9,227,464 symbols.

1.13 Huffman Coding 59

If a set of symbols happens to have the Fibonacci probabilities and therefore results
in a maximal-height Huffman tree with codes that are too long, the tree can be reshaped
(and the maximum code length shortened) by slightly modifying the symbol probabil-
ities, so they are not much different from the original, but do not form a Fibonacci
sequence.

1.13.8 Canonical Huffman Codes
The code of Table 1.31c has a simple interpretation. It assigns the first four symbols
the 3-bit codes 0, 1, 2, 3, and the last two symbols the 2-bit codes 2 and 3. This is an
example of a canonical Huffman code. Such a code has been selected from among the
several (or even many) possible Huffman codes because its properties make it easy and
fast to use and because it can be encoded more efficiently than the alternative codes.

Canonical (adjective)
1. Of, relating to, or required by canon law.
2. Of or appearing in the biblical canon.
3. Conforming to orthodox or well-established rules or patterns, as of procedure.
4. Of or belonging to a cathedral chapter.
5. Of or relating to a literary canon.
6. Music having the form of a canon.

Table 1.34 shows a slightly bigger example of a canonical Huffman code. Imagine
a set of 16 symbols (whose probabilities are irrelevant and are not shown) such that
four symbols are assigned 3-bit codes, five symbols are assigned 5-bit codes, and the
remaining seven symbols are assigned 6-bit codes. Table 1.34a shows a set of possible
Huffman codes, while Table 1.34b shows a set of canonical Huffman codes. It is easy to
see that the seven 6-bit canonical codes are simply the 6-bit integers 0 through 6. The
five codes are the 5-bit integers 4 through 8, and the four codes are the 3-bit integers 3
through 6. We first show how these codes are generated and then how they are used.

1: 000 011 9: 10100 01000
2: 001 100 10: 101010 000000
3: 010 101 11: 101011 000001
4: 011 110 12: 101100 000010
5: 10000 00100 13: 101101 000011
6: 10001 00101 14: 101110 000100
7: 10010 00110 15: 101111 000101
8: 10011 00111 16: 110000 000110

(a) (b) (a) (b)

length: 1 2 3 4 5 6
numl: 0 0 4 0 5 7
first: 2 4 3 5 4 0

Table 1.34. Table 1.35.

The top row of Table 1.35 (length) lists the possible code lengths, from 1 to 6 bits.
The second row (numl) lists the number of codes of each length, and the bottom row
(first) lists the first code in each group. This is why the three groups of codes start with
values 3, 4, and 0. To obtain the top two rows we need to compute the lengths of all

60 1. Basic Codes

the Huffman codes for the given alphabet (see below). The third row is computed by
setting “first[6]:=0;” and iterating

for l:=5 downto 1 do first[l]:=�(first[l+1]+numl[l+1])/2�;
This guarantees that all the 3-bit prefixes of codes longer than three bits will be less
than first[3] (which is 3), all the 5-bit prefixes of codes longer than five bits will be
less than first[5] (which is 4), and so on. Once it is known how many codes are
needed (and what the first code is) for each length, it is trivial to construct the full set
of canonical codewords.

Now, for the applications of these unusual codes. Canonical Huffman codes are
useful in cases where the alphabet is large and where fast decoding is mandatory. Because
of the way the codes are constructed, it is easy for the decoder to identify the length
of a code by reading and examining input bits one by one. Once the length is known,
the symbol can be found in one step. The pseudocode listed here shows the rules for
decoding:

l:=1; input v;
while v<first[l]
append next input bit to v; l:=l+1;
endwhile

As an example, suppose that the next code is 00110. As bits are input and appended
to v, it goes through the values 0, 00=0, 001=1, 0011=3, 00110=6, while l is incremented
from 1 to 5. All steps except the last satisfy v<first[l], so the last step determines
the value of l (the code length) as 5. The symbol itself is found by subtracting v −
first[5] = 6 − 4 = 2, so it is the third symbol (numbering starts from 0) in group
l = 5 (symbol 7 of the 16 symbols).

It has been mentioned that canonical Huffman codes are useful in cases where the
alphabet is large and fast decoding is important. A practical example is a collection
of documents archived and compressed by a word-based adaptive Huffman coder. In
an archive, a slow encoder is acceptable, but the decoder should be fast. When the
individual symbols are words, the alphabet may be huge, making it impractical, or even
impossible, to construct the Huffman code tree. However, even with a huge alphabet,
the number of different code lengths is small, rarely exceeding 20 bits (just the number of
20-bit codes is about a million). If canonical Huffman codes are used, and the maximum
code length is L, then the code length l of a symbol is found by the decoder in at most
L steps, and the symbol itself is identified in one more step.

He uses statistics as a drunken man uses lampposts—for support rather than
illumination.

—Andrew Lang, Treasury of Humorous Quotations

The last point to be discussed is the encoder. In order to construct the canonical
Huffman code, the encoder needs to know the length of the Huffman code of every sym-
bol. The main problem is the large size of the alphabet, which may make it impractical
or even impossible to build the entire Huffman code tree in memory. The algorithm
presented here (see [Hirschberg and Lelewer 90] and [Sieminski 88]) solves this problem.
It determines the code sizes for an alphabet of n symbols using just one array of size

1.13 Huffman Coding 61

2n. One half of this array is used as a heap, so we start with a short description of this
useful data structure.

A binary tree is a tree where every node has at most two children (i.e., it may have
0, 1, or 2 children). A complete binary tree is a binary tree where every node except
the leaves has exactly two children. A balanced binary tree is a complete binary tree
where some of the bottom-right nodes may be missing. A heap is a balanced binary tree
where every leaf contains a data item and the items are ordered such that every path
from a leaf to the root traverses nodes that are in sorted order, either nondecreasing (a
max-heap) or nonincreasing (a min-heap). Figure 1.36 shows examples of min-heaps.

5

9 11

13 17 20 25

25

119

17 2013

25 11

13 17 20

9

13 11

25 17 20

9

(a) (b) (c) (d)

Figure 1.36: Min-Heaps.

A common operation on a heap is to remove the root and rearrange the remaining
nodes to get back a heap. This is called sifting the heap. The four parts of Figure 1.36
show how a heap is sifted after the root (with data item 5) has been removed. Sifting
starts by moving the bottom-right node to become the new root. This guarantees that
the heap will remain a balanced binary tree. The root is then compared with its children
and may have to be swapped with one of them in order to preserve the ordering of a
heap. Several more swaps may be necessary to completely restore heap ordering. It is
easy to see that the maximum number of swaps equals the height of the tree, which is
�log2 n�.

The reason a heap must always remain balanced is that this makes it possible to
store it in memory without using any pointers. The heap is said to be “housed” in an
array. To house a heap in an array, the root is placed in the first array location (with
index 1), the two children of the node at array location i are placed at locations 2i and
2i + 1, and the parent of the node at array location j is placed at location �j/2�. Thus
the heap of Figure 1.36a is housed in an array by placing the nodes 5, 9, 11, 13, 17, 20,
and 25 in the first seven locations of the array.

The algorithm uses a single array A of size 2n. The frequencies of occurrence of the
n symbols are placed in the top half of A (locations n + 1 through 2n), and the bottom
half of A (locations 1 through n) becomes a min-heap whose data items are pointers to
the frequencies in the top half (Figure 1.37a). The algorithm then goes into a loop where
in each iteration the heap is used to identify the two smallest frequencies and replace
them with their sum. The sum is stored in the last heap position A[h], and the heap
shrinks by one position (Figure 1.37b). The loop repeats until the heap is reduced to
just one pointer (Figure 1.37c).

62 1. Basic Codes

Heap pointers Tree pointers and leaves

Leaves
(a)

(b)

(c)

Heap pointers

Tree pointers

2nn1

1

h

h 2n

2n

Figure 1.37: Huffman Heaps and Leaves in an Array.

We now illustrate this part of the algorithm using seven frequencies. The table
below shows how the frequencies and the heap are initially housed in an array of size
14. Pointers are shown in italics, and the heap is delimited by square brackets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[14 12 13 10 11 9 8] 25 20 13 17 9 11 5

The first iteration selects the smallest frequency (5), removes the root of the heap
(pointer 14), and leaves A[7] empty.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[12 10 13 8 11 9] 25 20 13 17 9 11 5

The heap is sifted, and its new root (12) points to the second smallest frequency (9)
in A[12]. The sum 5+9 is stored in the empty location 7, and the three array locations
A[1], A[12], and A[14] are set to point to that location.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[7 10 13 8 11 9] 5+9 25 20 13 17 7 11 7

The heap is now sifted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[13 10 7 8 11 9] 14 25 20 13 17 7 11 7

The new root is 13, implying that the smallest frequency (11) is stored at A[13].
The root is removed, and the heap shrinks to just five positions, leaving location 6 empty.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[10 11 7 8 9] 14 25 20 13 17 7 11 7

The heap is now sifted. The new root is 10, showing that the second smallest
frequency, 13, is stored at A[10]. The sum 11 + 13 is stored at the empty location 6,
and the three locations A[1], A[13], and A[10] are set to point to 6.

1.13 Huffman Coding 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 11 7 8 9] 11+13 14 25 20 6 17 7 6 7

Figure 1.38 shows how the loop continues until the heap shrinks to just one node
that is the single pointer 2. This indicates that the total frequency (which happens to
be 100 in our example) is stored in A[2]. All other frequencies have been replaced by
pointers. Figure 1.39a shows the heaps generated during the loop.

The final result of the loop is

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[2] 100 2 2 3 4 5 3 4 6 5 7 6 7

from which it is easy to figure out the code lengths of all seven symbols. To find the
length of the code of symbol 14, e.g., we follow the pointers 7, 5, 3, 2 from A[14] to the
root. Four steps are necessary, so the code length is 4.

The code lengths for the seven symbols are 2, 2, 3, 3, 4, 3, and 4 bits. This can also
be verified from the Huffman code tree of Figure 1.39b. A set of codes derived from this
tree is shown in the following table:

Count: 25 20 13 17 9 11 5
Code: 01 11 101 000 0011 100 0010
Length: 2 2 3 3 4 3 4

1.13.9 Is Huffman Coding Dead?
The advantages of arithmetic coding are well known to users of compression algorithms.
Arithmetic coding can compress data to its entropy, its adaptive version works well if
fed the correct probabilities, and its performance does not depend on the size of the
alphabet. On the other hand, arithmetic coding is slower than Huffman coding, its
compression potential is not always utilized to its maximum, its adaptive version is
very sensitive to the symbol probabilities and in extreme cases may even expand the
data. Finally, arithmetic coding is not robust; a single error may propagate indefinitely
and may result in wrong decoding of a large quantity of compressed data. (Some users
may complain that they don’t understand arithmetic coding and have no idea how to
implement it, but this doesn’t seem a serious concern, because implementations of this
method are available for all major computing platforms.) A detailed comparison and
analysis of both methods is presented in [Bookstein and Klein 93], with the conclusion
that arithmetic coding has the upper hand only in rare situations.

In [Gallager 74], Robert Gallager shows that the redundancy of Huffman coding is at
most p1 +0.086 where p1 is the probability of the most-common symbol in the alphabet.
The redundancy is the difference between the average Huffman codeword length and
the entropy. Since arithmetic coding can compress data to its entropy, the quantity
p1+0.086 indicates by how much arithmetic coding outperforms Huffman coding. Given
a 2-symbol alphabet, the more probable symbol appears with probability 0.5 or more,
but given a large alphabet, such as the set of letters, digits and punctuation marks used
by a language, the largest symbol probability is typically around 15–20%, bringing the
value of the quantity p1 + 0.086 to around 0.1. This means that Huffman codes are

64 1. Basic Codes

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[7 11 6 8 9] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 17+14 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 9 8 6] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[9 6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 20+24 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 8 5] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[8 5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 25+31 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3 4] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56+44 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[2] 100 2 2 3 4 5 3 4 6 5 7 6 7

Figure 1.38: Sifting the Heap.

1.13 Huffman Coding 65

5 9 11 13

17 20
250

1

1
1

1

1
1

0

0
0

0

5

9 11

13 17 20 25

9

1113

17 2025

13 14

25 17 20

11

17 14

25 20

13

17 24

25 20

14

20 24

25

17

24 25

31

20

25 31

24

31 44

25

44

31

(a)

(b)

Figure 1.39: (a) Heaps. (b) Huffman Code Tree.

Considine’s Law. Whenever one word or letter can change the entire meaning of a
sentence, the probability of an error being made will be in direct proportion to the
embarrassment it will cause.

—Bob Considine

66 1. Basic Codes

at most 0.1 bit longer (per symbol) than arithmetic coding. For some (perhaps even
many) applications, such a small difference may be insignificant, but those applications
for which this difference is significant may be important.

Bookstein and Klein examine the two extreme cases of large and small alphabets.
Given a text file in a certain language, it is often compressed in blocks. This limits the
propagation of errors and also provides several entry points into the file. The authors
examine the probabilities of characters of several large alphabets (each consisting of the
letters and punctuations marks of a natural language), and list the average codeword
length for Huffman and arithmetic coding (the latter is the size of the compressed file
divided by the number of characters in the original file). The surprising conclusion is
that the Huffman codewords are longer than the arithmetic codewords by less than one
percent. Also, arithmetic coding performs better than Huffman coding only in large
blocks of text. The minimum block size where arithmetic coding is preferable turns
out to be between 269 and 457 characters. Thus, for shorter blocks, Huffman coding
outperforms arithmetic coding.

The other extreme case is a binary alphabet where one symbol has probability e
and the other has probability 1 − e. If e = 0.5, no method will compress the data. If
the probabilities are skewed, Huffman coding does a bad job. The Huffman codes of the
two symbols are 0 and 1 independent of the symbols’ probabilities. Each code is 1-bit
long, and there is no compression. Arithmetic coding, on the other hand, compresses
such data to its entropy, which is −[e log2 e + (1− e) log2(1− e)]. This expression tends
to 0 for both small e (close to 0) and for large e (close to 1). However, there is a simple
way to improve the performance of Huffman coding in this case. Simply group several
bits into a word. If we group the bits in 4-bit words, we end up with an alphabet of 16
symbols, where the probabilities are less skewed and the Huffman codes do a better job,
especially because of the Gallager bound.

Another difference between Huffman and arithmetic coding is the case of wrong
probabilities. This is especially important when a compression algorithm employs a
mathematical model to estimate the probabilities of occurrence of individual symbols.
The authors show that, under reasonable assumptions, arithmetic coding is affected by
wrong probabilities more than Huffman coding.

Speed is also an important consideration in many applications. Huffman encoding
is fast. Given a symbol to encode, the symbol is used as a pointer to a code table, the
Huffman code is read from the table, and is appended to the codes-so-far. Huffman
decoding is slower because the decoder has to start at the root of the Huffman code
tree and slide down, guided by the bits of the current codeword, until it reaches a
leaf node, where it finds the symbol. Arithmetic coding, on the other hand, requires
multiplications and divisions, and is therefore slower. (Notice, however, that certain
versions of arithmetic coding, most notably the Q-coder, MQ-coder, and QM-coder,
have been developed specifically to avoid slow operations and are not slow.)

Often, a data compression application requires a certain amount of robustness
against transmission errors. Neither Huffman nor arithmetic coding is robust, but it
is known from long experience that Huffman codes tend to synchronize themselves fairly
quickly following an error, in contrast to arithmetic coding, where an error may prop-
agate to the end of the compressed file. It is also possible to construct resynchronizing
Huffman codes, as shown in Section 3.4.

1.13 Huffman Coding 67

The conclusion is that Huffman coding, being fast, simple, and effective, is preferable
to arithmetic coding for most applications. Arithmetic coding is the method of choice
only in cases where the alphabet has skewed probabilities that cannot be redefined.

In Japan, the basic codes are the Civil Code, the Commercial Code,
the Penal Code, and procedural codes such as the Code of

Criminal Procedure and the Code of Civil Procedure.

—Roger E. Meiners, The Legal Environment of Business

2
Advanced Codes
We start this chapter with codes for the integers. This is followed by many types
of variable-length codes that are based on diverse principles, have been developed by
different approaches, and have various useful properties and features.

2.1 VLCs for Integers
Following Elias, it is customary to denote the standard binary representation of the
integer n by β(n). This representation can be considered a code (the beta code), but
it does not satisfy the prefix property (because, for example, 2 = 102 is the prefix of
4 = 1002). The beta code has another disadvantage. Given a set of integers between 0
and n, we can represent each in 1+�log2 n� bits, a fixed-length representation. However,
if the number of integers in the set is not known in advance (or if the largest integer
is unknown), a fixed-length representation cannot be used and the natural solution is
to assign variable-length codes to the integers. Any variable-length codes for integers
should satisfy the following requirements:

1. Given an integer n, its code should be as short as possible and should be con-
structed from the magnitude, length, and bit pattern of n, without the need for any
table lookups or other mappings.

2. Given a bitstream of variable-length codes, it should be easy to decode the next
code and obtain an integer n even if n hasn’t been seen before.

We will see that in many VLCs for integers, part of the binary representation of the
integer is included in the code, and the rest of the code is side information indicating
the length or precision of the encoded integer.

Several codes for the integers are described in the first few sections of this chapter.
Some of them can code only nonnegative integers and others can code only positive
integers. A VLC for positive integers can be extended to encode nonnegative integers

70 2. Advanced Codes

by incrementing the integer before it is encoded and decrementing the result produced
by decoding. A VLC for arbitrary integers can be obtained by a bijection, a mapping
of the form

0 −1 1 −2 2 −3 3 −4 4 −5 5 · · ·
1 2 3 4 5 6 7 8 9 10 11 · · ·

A function is bijective if it is one-to-one and onto.

Perhaps the simplest variable-length code for integers is the well-known unary code.
The unary code of the positive integer n is constructed as n− 1 bits of 1 followed by a
single 0, or alternatively as n− 1 zeros followed by a single 1 (the three left columns of
Table 2.1). The length of the unary code for the integer n is therefore n bits. The two
rightmost columns of Table 2.1 show how the unary code can be extended to encode
the nonnegative integers (which makes the codes one bit longer). The unary code is
simple to construct and is useful in many applications, but it is not universal. Stone-age
people indicated the integer n by marking n adjacent vertical bars on a stone, which
is why the unary code is sometimes known as a stone-age binary and each of its n or
(n− 1) 1’s (or n or (n− 1) zeros) is termed a stone-age bit.

Stone Age Binary?

n Code Reverse Alt. code Alt. reverse
0 – – 0 1
1 0 1 10 01
2 10 01 110 001
3 110 001 1110 0001
4 1110 0001 11110 00001
5 11110 00001 111110 000001

Table 2.1: Some Unary Codes.

It is easy to see that the unary code satisfies the prefix property, so it is instanta-
neous and can be used as a variable-length code. Since its length L satisfies L = n, we
get 2−L = 2−n, so it makes sense to use this code in cases where the input data consists
of integers n with exponential probabilities P (n) ≈ 2−n. Given data that lends itself to
the use of the unary code (i.e., a set of integers that satisfy P (n) ≈ 2−n), we can assign
unary codes to the integers and these codes will be as good as the Huffman codes with
the advantage that the unary codes are trivial to encode and decode. In general, the
unary code is used as part of other, more sophisticated, variable-length codes.

Example: Table 2.2 lists the integers 1 through 6 with probabilities P (n) = 2−n,
except that P (6) = 2−5 ≈ 2−6. The table lists the unary codes and Huffman codes for
the six integers, and it is obvious that these codes have the same lengths (except the
code of 6, because this symbol does not have the correct probability).

Every positive number was one of Ramanujan’s personal friends.
—J. E. Littlewood

2.2 Start-Step-Stop Codes 71

n Prob. Unary Huffman

1 2−1 0 0
2 2−2 10 10
3 2−3 110 110
4 2−4 1110 1110
5 2−5 11110 11110
6 2−5 111110 11111

Table 2.2: Six Unary and Huffman Codes.

2.2 Start-Step-Stop Codes
The unary code is ideal for compressing data that consists of integers n with probabilities
P (n) ≈ 2−n. If the data to be compressed consists of integers with different probabilities,
it may benefit from one of the general unary codes (also known as start-step-stop codes).
Such a code, proposed by [Fiala and Greene 89], depends on a triplet (start, step, stop)
of nonnegative integer parameters. A set of such codes is constructed subset by subset
as follows:

1. Set n = 0.
2. Set a = start + n× step.
3. Construct the subset of codes that start with n leading 1’s, followed by a single

intercalary bit (separator) of 0, followed by a combination of a bits. There are 2a such
codes.

4. Increment n by step. If n < stop, go to step 2. If n > stop, issue an error and
stop. If n = stop, repeat steps 2 and 3 but without the single intercalary 0 bit of step 3,
and stop.

This construction makes it obvious that the three parameters have to be selected
such that start + n × step will reach “stop” for some nonnegative n. The number of
codes for a given triplet is normally finite and depends on the choice of parameters. It
is given by

2stop+step − 2start

2step − 1
.

Notice that this expression increases exponentially with parameter “stop,” so large sets
of these codes can be generated even with small values of the three parameters. Notice
that the case step = 0 results in a zero denominator and thus in an infinite set of codes.

Tables 2.3 and 2.4 show the 680 codes of (3,2,9) and the 2044 codes of (2,1,10).
Table 2.5 lists the number of codes of each of the general unary codes (2, 1, k) for k =
2, 3, . . . , 11. This table was calculated by the Mathematica command Table[2ˆ(k+1)-
4,{k,2,11}].

Examples:
1. The triplet (n, 1, n) defines the standard (beta) n-bit binary codes, as can be

verified by direct construction. The number of such codes is easily seen to be

2n+1 − 2n

21 − 1
= 2n.

72 2. Advanced Codes

a = nth Number of Range of
n 3 + n · 2 codeword codewords integers

0 3 0xxx 23 = 8 0–7
1 5 10xxxxx 25 = 32 8–39
2 7 110xxxxxxx 27 = 128 40–167
3 9 111xxxxxxxxx 29 = 512 168–679

Total 680

Table 2.3: The General Unary Code (3,2,9).

a = nth Number of Range of
n 2 + n · 1 codeword codewords integers
0 2 0xx 4 0–3
1 3 10xxx 8 4–11
2 4 110xxxx 16 12–27
3 5 1110xxxxx 32 28–59

· · · · · · · · ·
8 10 11...1︸ ︷︷ ︸

8

xx...x︸ ︷︷ ︸
10

1024 1020–2043

Total 2044

Table 2.4: The General Unary Code (2,1,10).

k : 2 3 4 5 6 7 8 9 10 11
(2, 1, k): 4 12 28 60 124 252 508 1020 2044 4092

Table 2.5: Number of General Unary Codes (2, 1, k) for k = 2, 3, . . . , 11.

2. The triplet (0, 0,∞) defines the codes 0, 10, 110, 1110,. . .which are the unary
codes but assigned to the integers 0, 1, 2,. . . instead of 1, 2, 3,. . . .

3. The triplet (0, 1,∞) generates a variance of the Elias gamma code.
4. The triplet (k, k,∞) generates another variance of the Elias gamma code.
5. The triplet (k, 0,∞) generates the Rice code with parameter k.
6. The triplet (s, 1,∞) generates the exponential Golomb codes of page 164.
7. The triplet (1, 1, 30) produces (230 − 21)/(21 − 1) ≈ a billion codes.
8. Table 2.6 shows the general unary code for (10,2,14). There are only three code

lengths since “start” and “stop” are so close, but there are many codes because “start”
is large.

2.3 Start/Stop Codes 73

a = nth Number of Range of
n 10 + n · 2 codeword codewords integers

0 10 0 x...x︸︷︷︸
10

210 = 1K 0–1023

1 12 10 xx...x︸ ︷︷ ︸
12

212 = 4K 1024–5119

2 14 11 xx...xx︸ ︷︷ ︸
14

214 = 16K 5120–21503

Total 21504

Table 2.6: The General Unary Code (10,2,14).

2.3 Start/Stop Codes
The start-step-stop codes are flexible. By carefully adjusting the values of the three
parameters it is possible to construct sets of codes of many different lengths. However,
the lengths of these codes are restricted to the values n+1+start+n× step (except for
the last subset where the codes have lengths stop + start + stop× step). The start/stop
codes of this section were conceived by Steven Pigeon and are described in [Pigeon 01a,b],
where it is shown that they are universal. A set of these codes is fully specified by an
array of nonnegative integer parameters (m0, m1, . . . , mt) and is constructed in subsets,
similar to the start-step-stop codes, in the following steps:

1. Set i = 0 and a = m0.
2. Construct the subset of codes that start with i leading 1’s, followed by a single

separator of 0, followed by a combination of a bits. There are 2a such codes.
3. Increment i by 1 and set a← a + mi.
4. If i < t, go to step 2. Otherwise (i = t), repeat step 2 but without the single 0

intercalary, and stop.
Thus, the parameter array (0, 3, 1, 2) results in the set of codes listed in Table 2.7.

i a Codeword # of codes Length
0 2 0xx 4 3
1 5 10xxxxx 32 7
2 6 110xxxxxx 64 9
3 8 111xxxxxxxx 256 11

Table 2.7: The Start/Stop Code (2,3,1,2).

The maximum code length is t + m0 + · · ·+ mt and on average the start/stop code
of an integer s is never longer than �log2 s� (the length of the binary representation of
s). If an optimal set of such codes is constructed by an encoder and is used to compress
a data file, then the only side information needed in the compressed file is the value
of t and the array of t + 1 parameters mi (which are mostly small integers). This is
considerably less than the size of a Huffman tree or the side information required by
many other compression methods.

The start/stop codes can also encode an indefinite number of arbitrarily large inte-
gers. Simply set all the parameters to the same value and set t to infinity.

74 2. Advanced Codes

Steven Pigeon, the developer of these codes, shows that the parameters of the
start/stop codes can be selected such that the resulting set of codes will have an average
length shorter than what can be achieved with the start-step-stop codes for the same
probability distribution. He also shows how the probability distribution can be employed
to determine the best set of parameters for the code. In addition, the number of codes
in the set can be selected as needed, in contrast to the start-step-stop codes that often
result in more codes than needed.

The Human Brain starts working the moment you are born and never stops until you
stand up to speak in public!

—George Jessel

2.4 Elias Codes

In his pioneering work [Elias 75], Peter Elias described three useful prefix codes. The
main idea of these codes is to prefix the integer being encoded with an encoded repre-
sentation of its order of magnitude. For example, for any positive integer n there is an
integer M such that 2M ≤ n < 2M+1. We can therefore write n = 2M + L where L is
at most M bits long, and generate a code that consists of M and L. The problem is to
determine the length of M and this is solved in different ways by the various Elias codes.
Elias denoted the unary code of n by α(n) and the standard binary representation of n,
from its most-significant 1, by β(n). His first code was therefore designated γ (gamma).

Elias gamma code γ(n) for positive integers n is simple to encode and decode
and is also universal.

Encoding. Given a positive integer n, perform the following steps:

1. Denote by M the length of the binary representation β(n) of n.
2. Prepend M − 1 zeros to it (i.e., the α(n) code without its terminating 1).

Step 2 amounts to prepending the length of the code to the code, in order to ensure
unique decodability.

The length M of the integer n is, from Equation (1.1), 1 + �log2 n�, so the length
of γ(n) is

2M − 1 = 2�log2 n�+ 1. (2.1)

We later show that this code is ideal for applications where the probability of n is
1/(2n2).

An alternative construction of the gamma code is as follows:

1. Find the largest integer N such that 2N ≤ n < 2N+1 and write n = 2N + L.
Notice that L is at most an N -bit integer.

2. Encode N in unary either as N zeros followed by a 1 or N 1’s followed by a 0.
3. Append L as an N -bit number to this representation of N .

Section 2.7 describes yet another way to construct the same code. Section 2.14
shows a connection between this code and certain binary search trees.

Table 2.8 lists the first 18 gamma codes, where the L part is in italics (see also
Table 2.51 and the C1 code of Table 2.16).

2.4 Elias Codes 75

Peter Elias

1 = 20 + 0 = 1 10 = 23 + 2 = 0001010
2 = 21 + 0 = 010 11 = 23 + 3 = 0001011
3 = 21 + 1 = 011 12 = 23 + 4 = 0001100
4 = 22 + 0 = 00100 13 = 23 + 5 = 0001101
5 = 22 + 1 = 00101 14 = 23 + 6 = 0001110
6 = 22 + 2 = 00110 15 = 23 + 7 = 0001111
7 = 22 + 3 = 00111 16 = 24 + 0 = 000010000
8 = 23 + 0 = 0001000 17 = 24 + 1 = 000010001
9 = 23 + 1 = 0001001 18 = 24 + 2 = 000010010

Table 2.8: 18 Elias Gamma Codes.

In his 1975 paper, Elias describes two versions of the gamma code. The first version
(titled γ) is encoded as follows:

1. Generate the binary representation β(n) of n.
2. Denote the length |β(n)| of β(n) by M .
3. Generate the unary u(M) representation of M as M − 1 zeros followed by a 1.
4. Follow each bit of β(n) by a bit of u(M).
5. Drop the leftmost bit (the leftmost bit of β(n) is always 1).

Thus, for n = 13 we prepare β(13) = 1̄1̄0̄1̄, so M = 4 and u(4) = 0001, resulting in
1̄01̄00̄01̄1. The final code is γ(13) = 01̄00̄01̄1.

The second version, dubbed γ′, moves the bits of u(M) to the left. Thus γ′(13) =
0001|1̄0̄1̄. The gamma codes of Table 2.8 are Elias’s γ′ codes. Both gamma versions are
universal.

Decoding is also simple and is done in two steps:

1. Read zeros from the code until a 1 is encountered. Denote the number of zeros
by N .

2. Read the next N bits as an integer L. Compute n = 2N + L.

It is easy to see that this code can be used to encode positive integers even in cases
where the largest integer is not known in advance. Also, this code grows slowly (see
Figure 2.34), so it is a good candidate for compressing integer data where small integers
are common and large ones are rare.

Elias delta code. In his gamma code, Elias prepends the length of the code in
unary (α). In his next code, δ (delta), he prepends the length in binary (β). Thus, the
Elias delta code, also for the positive integers, is slightly more complex to construct.

Encoding a positive integer n, is done in the following steps:

1. Write n in binary. The leftmost (most-significant) bit will be a 1.
2. Count the bits, remove the leftmost bit of n, and prepend the count, in binary,

to what is left of n after its leftmost bit has been removed.
3. Subtract 1 from the count of step 2 and prepend that number of zeros to the

code.

When these steps are applied to the integer 17, the results are: 17 = 100012 (five
bits). Remove the leftmost 1 and prepend 5 = 1012 yields 101|0001. Three bits were
added, so we prepend two zeros to obtain the delta code 00|101|0001.

76 2. Advanced Codes

To compute the length of the delta code of n, we notice that step 1 generates (from
Equation (1.1)) M = 1 + �log2 n� bits. For simplicity, we omit the � and � and observe
that

M = 1 + log2 n = log2 2 + log2 n = log2(2n).

The count of step 2 is M , whose length C is therefore C = 1+log2 M = 1+log2(log2(2n))
bits. Step 2 therefore prepends C bits and removes the leftmost bit of n. Step 3 prepends
C − 1 = log2 M = log2(log2(2n)) zeros. The total length of the delta code is therefore
the 3-part sum

log2(2n) + [1 + log2 log2(2n)]− 1 + log2 log2(2n) = 1 + �log2 n�+ 2�log2 log2(2n)�.
︸ ︷︷ ︸
step 1

︸ ︷︷ ︸
step 2

︸ ︷︷ ︸
step 3 (2.2)

Figure 2.34 illustrates the length graphically. We show below that this code is ideal for
data where the integer n occurs with probability 1/[2n(log2(2n))2].

An equivalent way to construct the delta code employs the gamma code:
1. Find the largest integer N such that 2N ≥ n < 2N+1 and write n = 2N + L.

Notice that L is at most an N -bit integer.
2. Encode N + 1 with the Elias gamma code.
3. Append the binary value of L, as an N -bit integer, to the result of step 2.
When these steps are applied to n = 17, the results are: 17 = 2N +L = 24 +1. The

gamma code of N + 1 = 5 is 00101, and appending L = 0001 to this yields 00101|0001.
Table 2.9 lists the first 18 delta codes, where the L part is in italics. See also the

related code C3 of Table 2.16, which has the same length.

1 = 20 + 0→ |L| = 0→ 1 10 = 23 + 2→ |L| = 3→ 00100010
2 = 21 + 0→ |L| = 1→ 0100 11 = 23 + 3→ |L| = 3→ 00100011
3 = 21 + 1→ |L| = 1→ 0101 12 = 23 + 4→ |L| = 3→ 00100100
4 = 22 + 0→ |L| = 2→ 01100 13 = 23 + 5→ |L| = 3→ 00100101
5 = 22 + 1→ |L| = 2→ 01101 14 = 23 + 6→ |L| = 3→ 00100110
6 = 22 + 2→ |L| = 2→ 01110 15 = 23 + 7→ |L| = 3→ 00100111
7 = 22 + 3→ |L| = 2→ 01111 16 = 24 + 0→ |L| = 4→ 001010000
8 = 23 + 0→ |L| = 3→ 00100000 17 = 24 + 1→ |L| = 4→ 001010001
9 = 23 + 1→ |L| = 3→ 00100001 18 = 24 + 2→ |L| = 4→ 001010010

Table 2.9: 18 Elias Delta Codes.

Decoding is done in the following steps:
1. Read bits from the code until you can decode an Elias gamma code. Call the

decoded result M + 1. This is done in the following substeps:
1.1 Count the leading zeros of the code and denote the count by C.
1.2 Examine the leftmost 2C + 1 bits (C zeros, followed by a single 1, followed by

C more bits). This is the decoded gamma code M + 1.

2.4 Elias Codes 77

2. Read the next M bits. Call this number L.
3. The decoded integer is 2M + L.

In the case of n = 17, the delta code is 001010001. We skip two zeros, so C = 2.
The value of the leftmost 2C + 1 = 5 bits is 00101 = 5, so M + 1 = 5. We read the next
M = 4 bits 0001, and end up with the decoded value 2M + L = 24 + 1 = 17.

To better understand the application and performance of these codes, we need to
identify the type of data it compresses best. Given a set of symbols ai, where each
symbol occurs in the data with probability Pi and the length of its code is li bits, the
average code length is the sum

∑
Pili and the entropy (the smallest number of bits

required to represent the symbols) is
∑

[−Pi log2 Pi]. The redundancy (Equation (1.2))
is the difference

∑
i Pili −

∑
i[−Pi log2 Pi] and we are looking for probabilites Pi that

will minimize this difference.
In the case of the gamma code, li = 1 + 2 log2 i. If we select symbol probabilities

Pi = 1/(2i2) (a power law distribution of probabilities, where the first 10 values are
0.5, 0.125, 0.0556, 0.03125, 0.02, 0.01389, 0.0102, 0.0078, 0.00617, and 0.005, see also
Table 2.17), both the average code length and the entropy become the identical sums

∑

i

1 + 2 log i

2i2
,

indicating that the gamma code is asymptotically optimal for this type of data. A
power law distribution of values is dominated by just a few symbols and especially by
the first. Such a distribution is very skewed and is therefore handled very well by the
gamma code which starts very short. In an exponential distribution, in contrast, the
small values have similar probabilities, which is why data with this type of statistical
distribution is compressed better by a Rice code (Section 2.24).

In the case of the delta code, li = 1 + log i + 2 log log(2i). If we select symbol
probabilities Pi = 1/[2i(log(2i))2] (where the first five values are 0.5, 0.0625, 0.025,
0.0139, and 0.009), both the average code length and the entropy become the identical
sums ∑

i

log 2 + log i + 2 log log(2i)
2i(log(2i))2

,

indicating that the redundancy is zero and the delta code is therefore asymptotically
optimal for this type of data.

Section 2.14 shows a connection between a variant of the delta code and certain
binary search trees.

The phrase “working mother” is redundant.
—Jane Sellman

The Elias omega code. Unlike the previous Elias codes, the omega code uses
itself recursively to encode the prefix M , which is why it is sometimes referred to as a
recursive Elias code. The main idea is to prepend the length of n to n as a group of
bits that starts with a 1, then prepend the length of the length, as another group, to
the result, and continue prepending lengths until the last length is 2 or 3 (and therefore
fits in two bits). In order to distinguish between a length group and the last, rightmost

78 2. Advanced Codes

group (of n itself), the latter is followed by a delimiter of 0, while each length group
starts with a 1.

Encoding a positive integer n is done recursively in the following steps:

1. Initialize the code-so-far to 0.
2. If the number to be encoded is 1, stop; otherwise, prepend the binary represen-

tation of n to the code-so-far. Assume that we have prepended L bits.
3. Repeat step 2, with the binary representation of L− 1 instead of n.

The integer 17 is therefore encoded by (1) a single 0, (2) prepended by the 5-bit
binary value 10001, (3) prepended by the 3-bit value of 5−1 = 1002, and (4) prepended
by the 2-bit value of 3− 1 = 102. The result is 10|100|10001|0.

Table 2.10 lists the first 18 omega codes (see also Table 2.13). Note that n = 1 is
handled as a special case.

1 0 10 11 1010 0
2 10 0 11 11 1011 0
3 11 0 12 11 1100 0
4 10 100 0 13 11 1101 0
5 10 101 0 14 11 1110 0
6 10 110 0 15 11 1111 0
7 10 111 0 16 10 100 10000 0
8 11 1000 0 17 10 100 10001 0
9 11 1001 0 18 10 100 10010 0

Table 2.10: 18 Elias Omega Codes.

Decoding is done in several nonrecursive steps where each step reads a group of
bits from the code. A group that starts with a zero signals the end of decoding.

1. Initialize n to 1.
2. Read the next bit. If it is 0, stop. Otherwise read n more bits, assign the group

of n + 1 bits to n, and repeat this step.

Some readers may find it easier to understand these steps rephrased as follows.

1. Read the first group, which will either be a single 0, or a 1 followed by n more
digits. If the group is a 0, the value of the integer is 1; if the group starts with a 1, then
n becomes the value of the group interpreted as a binary number.

2. Read each successive group; it will either be a single 0, or a 1 followed by n more
digits. If the group is a 0, the value of the integer is n; if it starts with a 1, then n
becomes the value of the group interpreted as a binary number.

Example. Decode 10|100|10001|0. The decoder initializes n = 1 and reads the first
bit. It is a 1, so it reads n = 1 more bit (0) and assigns n = 102 = 2. It reads the next
bit. It is a 1, so it reads n = 2 more bits (00) and assigns the group 100 to n. It reads
the next bit. It is a 1, so it reads four more bits (0001) and assigns the group 10001 to
n. The next bit read is 0, indicating the end of decoding.

The omega code is constructed recursively, which is why its length |ω(n)| can also
be computed recursively. We define the quantity lk(n) recursively by l1(n) = �log2 n�

2.4 Elias Codes 79

and li+1(n) = l1(li(n)). Equation (1.1) tells us that |β(n)| = l1(n) + 1 (where β is the
standard binary representation), and this implies that the length of the omega code is
given by the sum

|ω(n)| =
k∑

i=1

β(lk−i(n)) + 1 = 1 +
k∑

i=1

(li(n) + 1),

where the sum stops at the k that satisfies lk(n) = 1. From this, Elias concludes that
the length satisfies |ω(n)| ≤ 1 + 5

2�log2 n�.
A quick glance at any table of these codes shows that their lengths fluctuate. In

general, the length increases slowly as n increases, but when a new length group is
added, which happens when n = 22k

for any positive integer k, the length of the code
increases suddenly by several bits. For k values of 1, 2, 3, and 4, this happens when n
reaches 4, 16, 256, and 65,536. Because the groups of lengths are of the form “length,”
“log(length),” “log(log(length)),” and so on, the omega code is sometimes referred to as
a logarithmic-ramp code.

Table 2.11 compares the length of the gamma, delta, and omega codes. It shows that
the delta code is asymptotically best, but if the data consists mostly of small numbers
(less than 8) and there are only a few large integers, then the gamma code performs
better.

Values Gamma Delta Omega

1 1 1 2
2 3 4 3
3 3 4 4
4 5 5 4

5–7 5 5 5
8–15 7 8 6–7
16–31 9 9 7–8
32–63 11 10 8–10
64–88 13 11 10
100 13 11 11
1000 19 16 16
104 27 20 20
105 33 25 25
105 39 28 30

Table 2.11: Lengths of Three Elias Codes.

Beware of bugs in the above code; I have only proved it correct, not tried it.
—Donald Knuth

80 2. Advanced Codes

2.5 Levenstein Code

This little-known code for the nonnegative integers was conceived in 1968 by Vladimir
Levenshtein [Levenstein 06]. Both encoding and decoding are multistep processes.

Encoding. The Levenstein code of zero is a single 0. To code a positive number
n, perform the following:

1. Set the count variable C to 1. Initialize the code-so-far to the empty string.
2. Take the binary value of n without its leading 1 and prepend it to the code-so-far.
3. Let M be the number of bits prepended in step 2.
4. If M = 0, increment C by 1, go to and execute step 2 with M instead of n.
5. If M = 0, prepend C 1’s followed by a 0 to the code-so-far and stop.

n Levenstein code n Levenstein code
0 0 9 1110 1 001
1 10 10 1110 1 010
2 110 0 11 1110 1 011
3 110 1 12 1110 1 100
4 1110 0 00 13 1110 1 101
5 1110 0 01 14 1110 1 110
6 1110 0 10 15 1110 1 111
7 1110 0 11 16 11110 0 00 0000
8 1110 1 000 17 11110 0 00 0001

Table 2.12: 18 Levenstein Codes.

Table 2.12 lists some of these codes. Spaces have been inserted to indicate the
individual parts of each code. As an exercise, the reader may verify that the Levenstein
codes for 18 and 19 are 11110|0|00|0010 and 11110|0|00|0011, respectively.

Decoding is done as follows:
1. Set count C to the number of consecutive 1’s preceding the first 0.
2. If C = 0, the decoded value is zero, stop.
3. Set N = 1, and repeat step 4 (C − 1) times.
4. Read N bits, prepend a 1, and assign the resulting bitstring to N (thereby erasing

the previous value of N). The string assigned to N in the last iteration is the decoded
value.

The Levenstein code of the positive integer n is always one bit longer than the Elias
omega code of n.

2.6 Even–Rodeh Code 81

2.6 Even–Rodeh Code

The principle behind the Elias omega code occurred independently to S. Even and
M. Rodeh [Even and Rodeh 78]. Their code is similar to the omega code, the main
difference being that lengths are prepended until a 3-bit length is reached and be-
comes the leftmost group of the code. For example, the Even–Rodeh code of 2761
is 100|1100|101011001001|0 (4, 12, 2761, and 0).

The authors prove, by induction on n, that every nonnegative integer can be encoded
in this way. They also show that the length l(n) of their code satisfies l(n) ≤ 4 + 2L(n)
where L(n) is the length of the binary representation (beta code) of n, Equation (1.1).

The developers show how this code can be used as a comma to separate variable-
length symbols in a string. Given a string of symbols ai, precede each ai with the
Even–Rodeh code R of its length li. The codes and symbols can then be concatenated
into a single string

R(l1)a1R(l2)a2 . . . R(lm)am000

that can be uniquely separated into the individual symbols because the codes act as
separators (commas). Three zeros act as the string delimiter.

The developers also prove that the extra length of the codes shrinks asymptotically
to zero as the string becomes longer. For strings of length 210 bits, the overhead is less
than 2%. Table 2.13 (after [Fenwick 96]) lists several omega and Even–Rodeh codes.

n Omega Even–Rodeh
0 — 000
1 0 001
2 10 0 010
3 11 0 011
4 10 100 0 100 0
7 10 111 0 111 0
8 11 1000 0 100 1000 0

15 11 1111 0 100 1111 0
16 10 100 10000 0 101 10000 0
32 10 101 100000 0 110 100000 0

100 10 110 1100100 0 111 1100100 0
1000 10 110 1100100 0 110 1100100 0

Table 2.13: Several Omega and Even–Rodeh Codes.

Values ω ER
1 1 3

2–3 3 3
4–7 6 4
8–15 7 8
16–31 11 9
32–63 12 10
64–127 13 11
128–255 14 17
256–512 21 18

Table 2.14: Different Lengths.

Table 2.14 (after [Fenwick 96]) illustrates the different points where the lengths of
these codes increase. The length of the omega code increases when n changes from the
form 2m − 1 (where the code is shortest relative to n) to 2m (where it is longest). The
Even–Rodeh code behaves similarly, but may be slightly shorter or longer for various
intervals of n.

82 2. Advanced Codes

2.7 Punctured Elias Codes

The punctured Elias codes for the integers were designed by Peter Fenwick in an at-
tempt to improve the performance of the Burrows–Wheeler transform [Burrows and
Wheeler 94]. The codes are described in the excellent, 15-page technical report
[Fenwick 96]. The term “punctured” comes from the field of error-control codes. Often,
a codeword for error-detection or error-correction consists of the original data bits plus
a number of check bits. If some check bits are removed, to shorten the codeword, the
resulting code is referred to as punctured.

We start with the Elias gamma code. Section 2.4 describes two ways to construct
this code, and here we consider a third approach to the same construction. Write the
binary value of n, reverse its bits so its rightmost bit is now a 1, and prepend flags for the
bits of n. For each bit of n, create a flag of 0, except for the last (rightmost) bit (which
is a 1), whose flag is 1. Prepend the flags to the reversed n and remove the rightmost
bit. Thus, 13 = 11012 is reversed to yield 1011. The four flags 0001 are prepended and
the rightmost bit of 1011 is removed to yield the final gamma code 0001|101.

The punctured code eliminates the flags for zeros and is constructed as follows.
Write the binary value of n, reverse its bits, and prepend flags to indicate the number
of 1’s in n. For each bit of 1 in n we prepare a flag of 1, and terminate the flags with
a single 0. Thus, 13 = 11012 is reversed to 1011. It has three 1’s, so the flags 1110
are prepended to yield 1110|1011. We call this punctured code P1 and notice that it
starts with a 1 (there is at least one flag, except for the P1 code of n = 0) and also
ends with a 1 (because the original n, whose MSB is a 1, has been reversed). We can
therefore construct another punctured code P2 such that P2(n) equals P1(n + 1) with
its most-significant 1 removed.

Table 2.15 lists examples of P1 and P2. The feature that strikes the reader most
is that the codes are generally getting longer as n increases, but are also getting shorter
from time to time, for n values that are 1 less than a power of 2. For small values of
n, these codes are often a shade longer than the gamma code, but for large values they
average about 1.5 log2 n bits, shorter than the 2�log2 n� + 1 bits of the Elias gamma
code.

One design consideration for these codes was their expected behavior when applied
to data with a skewed distribution and more smaller values than larger values. Smaller
binary integers tend to have fewer 1’s, so it was hoped that the punctures would reduce
the average code length below 1.5 log2 n bits. Later work by Fenwick showed that this
hope did not materialize.

And as they carried him away
Our punctured hero was heard to say,
When in this war you venture out,
Best never do it dressed as a Kraut!
—Stephen Ambrose, Band of Brothers

2.8 Other Prefix Codes 83

n P1 P2 n P1 P2
0 0 01 11 11101101 100011
1 101 001 12 1100011 1101011
2 1001 1011 13 11101011 1100111
3 11011 0001 14 11100111 11101111
4 10001 10101 15 111101111 000001
5 110101 10011 16 1000001 1010001
6 110011 110111 . . .
7 1110111 00001 31 11111011111 0000001
8 100001 101001 32 10000001 10100001
9 1101001 100101 33 110100001 10010001

10 1100101 1101101

Table 2.15: Two Punctured Elias Codes.

2.8 Other Prefix Codes

Four prefix codes, C1 through C4, are presented in this section. We denote by B(n) the
binary representation of the integer n (the beta code). Thus, |B(n)| is the length, in bits,
of this representation. We also use B(n) to denote B(n) without its most significant bit
(which is always 1).

Code C1 consists of two parts. To code the positive integer n, we first generate the
unary code of |B(n)| (the size of the binary representation of n), then append B(n) to it.
An example is n = 16 = 100002. The size of B(16) is 5, so we start with the unary code
11110 (or 00001) and append B(16) = 0000. Thus, the complete code is 11110|0000 (or
00001|0000). Another example is n = 5 = 1012 whose code is 110|01. The length of
C1(n) is 2�log2 n�+ 1 bits. Notice that this code is identical to the general unary code
(0, 1,∞) and is closely related to the Elias gamma code.

Code C2 is a rearrangement of C1 where each of the 1 + �log2 n� bits of the first
part (the unary code) of C1 is followed by one of the bits of the second part. Thus, code
C2(16) = 101010100 and C2(5) = 10110.

Code C3 starts with |B(n)| coded in C2, followed by B(n). Thus, 16 is coded as
C2(5) = 10110 followed by B(16) = 0000, and 5 is coded as code C2(3) = 110 followed
by B(5) = 01. The length of C3(n) is 1 + �log2 n�+ 2�log2(1 + �log2 n�)� (same as the
length of the Elias delta code, Equation (2.2)).

Code C4 consists of several parts. We start with B(n). To its left we prepend
the binary representation of |B(n)| − 1 (one less than the length of n). This continues
recursively, until a 2-bit number is written. A 0 is then appended to the right of the
entire code, to make it uniquely decodable. To encode 16, we start with 10000, prepend
|B(16)| − 1 = 4 = 1002 to the left, then prepend |B(4)| − 1 = 2 = 102 to the left of that,
and finally append a 0 on the right. The result is 10|100|10000|0. To encode 5, we start
with 101, prepend |B(5)| − 1 = 2 = 102 to the left, and append a 0 on the right. The
result is 10|101|0. Comparing with Table 2.10 shows that C4 is the omega code.

(The 0 on the right make the code uniquely decodable because each part of C4 is the
standard binary code of some integer, so it starts with a 1. A start bit of 0 is therefore
a signal to the decoder that this is the last part of the code.)

84 2. Advanced Codes

n B(n) B(n) C1 C2 C3 C4

1 1 0| 0 0| 0
2 10 0 10|0 100 100|0 10|0
3 11 1 10|1 110 100|1 11|0
4 100 00 110|00 10100 110|00 10|100|0
5 101 01 110|01 10110 110|01 10|101|0
6 110 10 110|10 11100 110|10 10|110|0
7 111 11 110|11 11110 110|11 10|111|0
8 1000 000 1110|000 1010100 10100|000 11|1000|0
9 1001 001 1110|001 1010110 10100|001 11|1001|0

10 1010 010 1110|010 1011100 10100|010 11|1010|0
11 1011 011 1110|011 1011110 10100|011 11|1011|0
12 1100 100 1110|100 1110100 10100|100 11|1100|0
13 1101 101 1110|101 1110110 10100|101 11|1101|0
14 1110 110 1110|110 1111100 10100|110 11|1110|0
15 1111 111 1110|111 1111110 10100|111 11|1111|0
16 10000 0000 11110|0000 101010100 10110|0000 10|100|10000|0
31 11111 1111 11110|1111 111111110 10110|1111 10|100|11111|0
32 100000 00000 111110|00000 10101010100 11100|00000 10|101|100000|0
63 111111 11111 111110|11111 11111111110 11100|11111 10|101|111111|0
64 1000000 000000 1111110|000000 1010101010100 11110|000000 10|110|1000000|0

127 1111111 111111 1111110|111111 1111111111110 11110|111111 10|110|1111111|0
128 10000000 0000000 11111110|0000000 101010101010100 1010100|0000000 10|111|10000000|0
255 11111111 1111111 11111110|1111111 111111111111110 1010100|1111111 10|111|11111111|0

Table 2.16: Some Prefix Codes.

n Unary C1 C3

1 0.5 0.5000000
2 0.25 0.1250000 0.2500000
3 0.125 0.0555556 0.0663454
4 0.0625 0.0312500 0.0312500
5 0.03125 0.0200000 0.0185482
6 0.015625 0.0138889 0.0124713
7 0.0078125 0.0102041 0.0090631
8 0.00390625 0.0078125 0.0069444

Table 2.17: Ideal Probabilities of Eight Integers for Three Codes.

2.8 Other Prefix Codes 85

Table 2.16 shows examples of the four codes above, as well as B(n) and B(n).
The lengths of the four codes shown in the table increase as log2 n, in contrast with
the length of the unary code, which increases as n. These codes are therefore good
choices in cases where the data consists of integers n with probabilities that satisfy
certain conditions. Specifically, the length L of the unary code of n is L = n = log2 2n,
so it is ideal for the case where P (n) = 2−L = 2−n. The length of code C1(n) is
L = 1 + 2�log2 n� = log2 2 + log2 n2 = log2(2n2), so it is ideal for the case where

P (n) = 2−L =
1

2n2 .

The length of code C3(n) is

L = 1 + �log2 n�+ 2�log2(1 + �log2 n�)� = log2 2 + 2�log log2 2n�+ �log2 n�,

so it is ideal for the case where

P (n) = 2−L =
1

2n(log2 n)2
.

Table 2.17 shows the ideal probabilities that the first eight positive integers should have
for the unary, C1, and C3 codes to be used.

More prefix codes for the positive integers, appropriate for special applications, may
be designed by the following general approach. Select positive integers vi and combine
them in a list V (which may be finite or infinite according to needs). The code of the
positive integer n is prepared in the following steps:
1. Find k such that

k−1∑

i=1

vi < n ≤
k∑

i=1

vi.

2. Compute the difference

d = n−
[

k−1∑

i=1

vi

]
− 1.

The largest value of n is
∑k

1 vi, so the largest value of d is
∑k

i vi−
[∑k−1

1 vi

]−1 = vk−1,
a number that can be written in �log2 vk� bits. The number d is encoded, using the
standard binary code, either in this number of bits, or if d < 2�log2 vk�−vk, it is encoded
in �log2 vk� bits.
3. Encode n in two parts. Start with k encoded in some prefix code, and concatenate
the binary code of d. Since k is coded in a prefix code, any decoder would know how
many bits to read for k. After reading and decoding k, the decoder can compute the
value 2�log2 vk� − vk which tells it how many bits to read for d.

A simple example is the infinite sequence V = (1, 2, 4, 8, . . . , 2i−1, . . .) with k coded
in unary. The integer n = 10 satisfies

3∑

i=1

vi < 10 ≤
4∑

i=1

vi,

86 2. Advanced Codes

so k = 4 (with unary code 1110) and d = 10 − [∑3
i=1 vi

] − 1 = 2. Our values vi are
powers of 2, so log2 vi is an integer and 2log2 vk equals vi. Thus, the length of d in our
example is log2 vi = log2 8 = 3 and the code of 10 is 1110|010.

2.9 Ternary Comma Code
Binary (base 2) numbers are based on the two bits 0 and 1. Similarly, ternary (base 3)
numbers are based on the three digits (trits) 0, 1, and 2. Each trit can be encoded in
two bits, but two bits can have four values. Thus, it makes sense to work with a ternary
number system where each trit is represented by two bits and in addition to the three
trits there is a fourth symbol, a comma (c). Once we include the c, it becomes easy
to construct the ternary comma code for the integers. The comma code of n is simply
the ternary representation of n − 1 followed by a c. Thus, the comma code of 8 is 21c
(because 7 = 2 · 3 + 1) and the comma code of 18 is 122c (because 17 = 1 · 9 + 2 · 3 + 2).

Table 2.18 (after [Fenwick 96]) lists several ternary comma codes (the columns
labeled L are the length of the code, in bits). These codes start long (longer than
most of the other codes described here) but grow slowly. Thus, they are suitable for
applications where large integers are common. These codes are also easy to encode and
decode and their principal downside is the comma symbol (signalling the end of a code)
that requires two bits. This inefficiency is not serious, but becomes more so for comma
codes based on larger number bases. In a base-15 comma code, for example, each of
the 15 digits requires four bits and the comma is also a 4-bit pattern. Each code ends
with a 4-bit comma, instead of with the theoretical minimum of one bit, and this feature
renders such codes inefficient. (However, the overall redundancy per symbol decreases
for large number bases. In a base-7 system, one of eight symbols is sacrificed for the
comma, while in a base 15 it is one of 16 symbols.)

Value Code L Value Code L
0 c 2 11 101c 8
1 0c 4 12 102c 8
2 1c 4 13 110c 8
3 2c 4 14 111c 8
4 10c 6 15 112c 8
5 11c 6 16 120c 8
6 12c 6 17 121c 8
7 20c 6 18 122c 8
8 21c 6 19 200c 8
9 22c 6 20 201c 8

.
64 2100c 10 1,000 1101000c 16

128 11201c 12 3,000 11010002c 18
256 100110c 14 10,000 111201100c 20
512 200221c 14 65,536 10022220020c 24

Table 2.18: Ternary Comma Codes and Their Lengths.

2.10 Location Based Encoding (LBE) 87

The ideas above are simple and easy to implement, but they make sense only for
long bitstrings. In data compression, as well as in many other applications, we normally
need short codes, ranging in size from two to perhaps 12 bits. Because they are used for
compression, such codes have to be self-delimiting without adding any extra bits. The
solution is to design sets of prefix codes, codes that have the prefix property. Among
these codes, the ones that yield the best performance are the universal codes.

In 1840, Thomas Fowler, a self-taught English mathematician and inventor, created
a unique ternary calculating machine. Until recently, all detail of this machine was
lost. A research project begun in 1997 uncovered sufficient information to enable the
recreation of a physical concept model of Fowler’s machine. The next step is to create
a historically accurate replica.

—[Glusker et al 05]

2.10 Location Based Encoding (LBE)
Location based encoding (LBE) is a simple method for assigning variable-length codes
to a set of symbols, not necessarily integers. The originators of this method are P. S.
Chitaranjan, Arun Shankar, and K. Niyant [LBE 07]. The LBE encoder is essentially a
two-pass algorithm. Given a data file to be compressed, the encoder starts by reading
the file and counting symbol frequencies. Following the first pass, it (1) sorts the symbols
in descending order of their probabilities, (2) stores them in a special order in a matrix,
and (3) assigns them variable-length codes. In between the passes, the encoder writes
the symbols, in their order in the matrix, on the compressed stream, for the use of the
decoder.

The second pass simply reads the input file again symbol by symbol and replaces
each symbol with its code. The decoder starts by reading the sorted sequence of symbols
from the compressed stream and constructing the codes in lockstep with the encoder.
The decoder then reads the codes off its input and replaces each code with the original
symbol. Thus, decoding is fast.

The main idea is to assign short codes to the common symbols by placing the
symbols in a matrix in a special diagonal order, vaguely reminiscent of the zigzag order
used by JPEG, such that high-probability symbols are concentrated at the top-left corner
of the matrix. This is illustrated in Figure 2.19a, where the numbers 1, 2, 3, . . . indicate
the most-common symbol, the second most-common one, and so on. Each symbol
is assigned a variable-length code that indicates its position (row and column) in the
matrix. Thus, the code of 1 (the most-common symbol) is 11 (row 1 column 1), the code
of 6 is 0011 (row 3 column 1), and the code of 7 is 10001 (row 1 column 4). Each code
has two 1’s, which makes it trivial for the decoder to read and identify the codes. The
length of a code depends on the diagonal (shown in gray in the figure), and the figure
shows codes with lengths (also indicated in gray) from two to eight bits.

We know that Huffman coding fails for very small alphabets. For a 2-symbol alpha-
bet, the Huffman algorithm assigns 1-bit codes to the two symbols regardless of their
probabilities, so no compression is achieved. Given the same alphabet, LBE assigns the
two codes 11 and 101 to the symbols, so the average length of its codes is between 2 and

88 2. Advanced Codes

1 2

2

4

4

7

7

11 16
3

3

5

5

8

8

11

1111

12 17

22

6

6

9 13 18
10 14 19

15 20
21

28

- 1 3 6 12 20
2 4 7 13 21 33

32

5 8 14 22 34
9 15 23 35

16 24 36
25 37

38

- 10 17 26 39
11 18 27 40

19 28 41
29 42

43

- 30 44
31 45

46

(a) (b)

T1 T2 T3

Figure 2.19: LBE Code Tables.

3 (the shorter code is assigned to the most-common symbol, which is why the average
code length is in the interval (2, 2.5], still bad). Thus, LBE performs even worse in this
case. For alphabets with small numbers of symbols, such as three or four, LBE performs
better, but still not as good as Huffman.

The ASCII code assigns 7-bit codes to 128 symbols, and this should be compared
with the average code length achievable by LBE. LBE assigns codes of seven or fewer bits
to the 21 most-common symbols. Thus, if the alphabet consists of 21 or fewer symbols,
replacing them with LBE codes generates compression. For larger alphabets, longer
codes are needed, which may cause expansion (i.e., compression where the average code
length is greater than seven bits).

It is possible to improve LBE’s performance somewhat by constructing several ta-
bles, as illustrated in Figure 2.19b. Each code is preceded by its table number such that
the codes of table n are preceded by (2n− 2) 1’s. The codes of table 1 are not preceded
by any 1’s, those in table 2 are preceded by 11, those of table 3 are preceded by 1111,
and so on. Because of the presence of pairs of 1’s, position (1, 1) of a table cannot be
used and the first symbol of a table is placed at position (1, 2). The codes are placed in
table 1 until a code can become shorter if placed in table 2. This happens with the 10th
most-common symbol. Placing it in table 1 would have assigned it the code 100001,
whereas placing it in table 2 (which is empty so far) assigns it the shorter code 11|101.
The next example is the 12th symbol. Placing it in table 2 would have assigned it code
11|1001, but placing it in table 1 gives it the same-length code 100001. With this scheme
it is possible to assign short codes (seven bits or fewer) to the 31 most-common symbols.

Notice that there is no need to actually construct any tables. Both encoder and
decoder can determine the codes one by one simply by keeping track of the next available
position in each table. Once a code has been computed, it can be stored with other codes
in an array or another convenient data structure.

The decoder reads pairs of consecutive 1’s until it reaches a 0 or a single 1. This
provides the table number, and the rest of the code is read until two 1’s (not necessarily
consecutive) are found.

The method is simple but not very efficient, especially because the compressed
stream has to start with a list of the symbols in ascending order of probabilities. The
main advantage of LBE is simple implementation, simple encoding, and fast decoding.

2.11 Stout Codes 89

Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so uebersetzen sie es
in ihre Sprache, und dann ist es also bald ganz etwas anderes.
(The mathematicians are a sort of Frenchmen: when you talk to them, they imme-
diately translate it into their own language, and right away it is something entirely
different.)

—Johann Wolfgang von Goethe

2.11 Stout Codes
In his 1980 short paper [Stout 80], Quentin Stout introduced two families Rl and Sl

of recursive, variable-length codes for the integers, similar to and more general than
Elias omega and Even–Rodeh codes. The Stout codes are universal and asymptotically
optimal. Before reading ahead, the reader is reminded that the length L of the integer
n is given by L = 1 + �log2 n� (Equation (1.1)).

The two families of codes depend on the choice of an integer parameter l. Once a
value (greater than or equal to 2) for l has been selected, a codeword in the first family
consists of a prefix Rl(n) and a suffix 0n.

The suffix is the binary value of n in L bits, preceded by a single 0 separator. The
prefix Rl(n) consists of length groups. It starts with the length L of n, to which is
prepended the length L1 of L, then the length L2 of L1, and so on until a length Li

is reached that is short enough to fit in an l-bit group. Notice that the length groups
(except perhaps the leftmost one) start with 1. Thus, the single 0 separator indicates
the end of the length groups.

As an example, we select l = 2 and encode a 985-bit integer n whose precise value
is irrelevant. The suffix is the 986-bit string 0n and the prefix starts with the group
L = 985 = 11110110012. The length L1 of this group is 1010 = 10102, the length L2
of the second group is 4 = 1002, and the final length L3 is 3 = 112. The complete
codeword is therefore 11|100|1010|1111011001|0|n. Notice how the length groups start
with 1, which implies that each group is followed by a 1, except the last length group
which is followed by a 0.

Decoding is simple. The decoder starts by reading the first l bits. These are the
length of the next group. More and more length groups are read, until a group is found
that is followed by a 0. This indicates that the next group is n itself.

With this background, the recursive definition of the Rl prefixes is easy to read and
understand. We use the notation L = 1+�log2 n� and denote by B(n, l) the l-bit binary
representation (beta code) of the integer n. Thus, B(12, 5) = 01100. For l ≥ 2, the
prefixes are defined by

Rl(n) =
{

B(n, l), for 0 ≤ n ≤ 2l − 1,
Rl(L)B(n, L), for n ≥ 2l.

Those familiar with the Even–Rodeh code (Section 2.6) may already have realized
that this code is identical to R3. Furthermore, the Elias omega code (Section 2.4) is
in-between R2 and R3 with two differences: (1) the omega code encodes the quantities
Li − 1 and (2) the 0 separator is placed to the right of n.

90 2. Advanced Codes

R2(985) = 11 100 1010 1111011001
R3(985) = 100 1010 1111011001
R4(985) = 1010 1111011001
R5(985) = 01010 1111011001
R6(985) = 001010 1111011001

R2(31,925) = 11 100 1111 111110010110101
R3(31,925) = 100 1111 111110010110101
R4(31,925) = 1111 111110010110101
R5(31,925) = 01111 111110010110101
R6(31,925) = 001111 111110010110101

The short table lists the Rl(n) prefixes for 2 ≤ l ≤ 6 and 985-bit and 31,925-bit
integers. It is obvious that the shortest prefixes are obtained for parameter values l =
L = 1+�log2 n�. Larger values of l result in slightly longer prefixes, while smaller values
require more length groups and therefore result in much longer prefixes. Elementary
algebraic manipulations indicate that the range of best lengths L for a given parameter
l is given by [2s, 2e − 1] where s = 2l−1 and e = 2l − 1 = 2s − 1 (this is the range of
best lengths L, not best integers n). The following table lists these intervals for a few l
values and makes it clear that small parameters, such as 2 and 3, are sufficient for most
practical applications of data compression. Parameter l = 2 is best for integers that are
2 to 7 bits long, while l = 3 is best for integers that are 8 to 127 bits long.

l s e 2s 2e − 1
2 2 3 2 7
3 4 7 8 127
4 8 15 128 32,767
5 9 31 32,768 2,147,483,647

The second family of Stout codes is similar, but with different prefixes that are
denoted by Sl(n). For small l values, this family offers some improvement over the Rl

codes. Specifically, it removes the slight redundancy that exists in the Rl codes because
a length group cannot be 0 (which is why a length group in the omega code encodes
Li−1 and not Li). The Sl prefixes are similar to the Rl prefixes with the difference that
a length group for Li encodes Li − 1− l. Thus, S2(985), the prefix of a 985-bit integer
n, starts with the 10-bit length group 1111011001 and prepends to it the length group
for 10− 1− 2 = 7 = 1112. To this is prepended the length group for 3− 1− 2 = 0 as the
two bits 00. The result is the 15-bit prefix 00|111|1111011001, shorter than the 19 bits
of R2(985). Another example is S3(985), which starts with the same 1111011001 and
prepends to it the length group for 10 − 1 − 3 = 6 = 1102. The recursion stops at this
point because 110 is an l-bit group. The result is the 13-bit codeword 110|1111011001,
again shorter than the 17 bits of R3(985). The Sl(n) prefixes are defined recursively by

Sl(n) =
{

B(n, l), for 0 ≤ n ≤ 2l − 1,
Rl(L− 1− l)B(n, L), for n ≥ 2l.

Table 2.20 lists some S2(n) and S3(n) prefixes and illustrates their regularity. Notice
that the leftmost column lists the values of L, i.e., the lengths of the integers being
encoded, and not the integers themselves. A length group retains its value until the
group that follows it becomes all 1’s, at which point the group increments by 1 and the
group that follows is reset to 10 . . . 0. All the length groups, except perhaps the leftmost
one, start with 1. This regular behavior is the result of the choice Li − 1− l.

The prefix S2(64), for example, starts with the 7-bit group 1000000 = 64 and
prepends to it S2(7− 1− 2) = S2(4) = 00|100. We stress again that the table lists only

2.12 Boldi–Vigna (ζ) Codes 91

L S2(n) S3(n)

1 01 001
2 10 010
3 11 011
4 00 100 100
5 00 101 101
6 00 110 110
7 00 111 111
8 01 1000 000 1000

15 01 1111 000 1111
16 10 10000 001 10000
32 11 100000 010 100000
64 00 100 1000000 011 1000000

128 00 101 10000000 100 10000000
256 00 110 100000000 101 100000000
512 00 111 1000000000 110 1000000000

1024 01 1000 10000000000 111 10000000000
2048 01 1001 100000000000 000 1000 100000000000

Table 2.20: S2(n) and S3(n) Codes.

the prefixes, not the complete codewords. Once this is understood, it is not hard to
see that the second Stout code is a prefix code. Once a codeword has been assigned, it
will not be the prefix of any other codeword. Thus, for example, the prefixes of all the
codewords for 64-bit integers start with the prefix 00 100 of the 4-bit integers, but any
codeword for a 4-bit integer has a 0 following the 00 100, whereas the codewords for the
64-bit integers have a 1 following 00 100.

2.12 Boldi–Vigna (ζ) Codes

The World Wide Web (WWW) was created in 1990 and currently, after only 17 years
of existence, it completely pervades our lives. It is used by many people and is steadily
growing and finding more applications. Formally, the WWW is a collection of inter-
linked, hypertext documents (web pages) that can be sent over the Internet. Mathemat-
ically, the pages and hyperlinks may be viewed as nodes and edges in a vast directed
graph (a webgraph) which itself has become an important object of study. Currently,
the graph of the entire WWW consists of hundreds of millions of nodes and over a billion
links. Experts often claim that these numbers grow exponentially with time. The vari-
ous web search engines crawl over the WWW, collecting pages, resolving their hypertext
links, and creating large webgraphs. Thus, a search engine operates on a vast data base
and it is natural to want to compress this data.

One approach to compressing a webgraph is outlined in [Randall et al. 01]. Each
URL is replaced by an integer. These integers are stored in a list that includes, for
each integer, a pointer to an adjacency list of links. Thus, for example, URL 104 may

92 2. Advanced Codes

be a web page that links to URLs 101, 132, and 174. These three integers become
the adjacency list of 104, and this list is compressed by computing the differences of
adjacent links and replacing the differences with appropriate variable-length codes. In
our example, the differences are 101− 104 = −3, 132− 101 = 31, and 174− 132 = 42.

Experiments with large webgraphs indicate that the differences (also called gaps or
deltas) computed for a large webgraph tend to be distributed according to a power law
whose parameter in normally in the interval [1.1, 1.3], so the problem of compressing a
webgraph is reduced to the problem of finding a variable-length code that corresponds
to such a distribution.

A power law distribution has the form

Zα[n] =
P

nα

where Zα[n] is the distribution (the number of occurrences of the value n), α is a
parameter of the distribution, and P is a constant of proportionality. Codes for power
law distributions have already been mentioned. The length of the Elias gamma code
(Equation (2.1)) is 2�log2 n�+1, which makes it a natural choice for a distribution of the
form 1/(2n2). This is a power law distribution with α = 2 and P = 1/2. Similarly, the
Elias delta code is suitable for a distribution of the form 1/[2n(log2(2n))2]. This is very
close to a power law distribution with α = 1. The nibble code and its variations (page 40)
correspond to power law distributions of the form 1/n1+ 1

k , where the parameter is 1+ 1
k .

The remainder of this section describes the zeta (ζ) code, also known as Boldi–Vigna
code, introduced by Paolo Boldi and Sebastiano Vigna as a family of variable-length
codes that are best choices for the compression of webgraphs. The original references
are [Boldi and Vigna 04a] and [Boldi and Vigna 04b]. The latest reference is [Boldi and
Vigna 05].

We start with Zipf’s law, an empirical power law [Zipf 07] introduced by the linguist
George K. Zipf. It states that the frequency of any word in a natural language is roughly
inversely proportional to its position in the frequency table. Intuitively, Zipf’s law states
that the most frequent word in any language is twice as frequent as the second most-
frequent word, which in turn is twice as frequent as the third word, and so on.

For a language having N words, the Zipf power law distribution with a parameter
α is given by

Zα[n] =
1/nα

∑N
i=1

1
iα

If the set is infinite, the denominator becomes the well-known Riemann zeta function

ζ(α) =
∞∑

i=1

1
iα

which converges to a finite value for α > 1. In this case, the distribution can be written
in the form

Zα[n] =
1

ζ(α)nα

2.12 Boldi–Vigna (ζ) Codes 93

The Boldi–Vigna zeta code starts with a positive integer k that becomes the shrink-
ing factor of the code. The set of all positive integers is partitioned into the intervals
[20, 2k − 1], [2k, 22k − 1], [22k, 23k − 1], and in general [2hk, 2(h+1)k − 1]. The length of
each interval is 2(h+1)k − 2hk.

Next, a minimal binary code is defined, which is closely related to the phased-in
codes of Section 1.9. Given an interval [0, z−1] and an integer x in this interval, we first
compute s = �log2 z�. If x < 2s − z, it is coded as the xth element of the interval, in
s− 1 bits. Otherwise, it is coded as the (x− z − 2s)th element of the interval in s bits.

With this background, here is how the zeta code is constructed. Given a positive
integer n to be encoded, we employ k to determine the interval where n is located. Once
this is known, the values of h and k are used in a simple way to construct the zeta code
of n in two parts, the value of h + 1 in unary (as h zeros followed by a 1), followed by
the minimal binary code of n− 2hk in the interval [0, 2(h+1)k − 2hk − 1].

Example. Given k = 3 and n = 16, we first determine that n is located in the
interval [23, 26 − 1], which corresponds to h = 1. Thus, h + 1 = 2 and the unary code of
2 is 01. The minimal binary code of 16− 23 = 8 is constructed in steps as follows. The
length z of the interval [23, 26 − 1] is 56. This implies that s = �log2 56� = 6. The value
8 to be encoded satisfies 8 = 26 − 56, so it is encoded as x− z − 2s = 8− 56− 26 = 16
in six bits, resulting in 010000. Thus, the ζ3 code of n = 16 is 01|010000.

Table 2.21 lists ζ codes for various shrinking factors k. For k = 1, the ζ1 code is
identical to the γ code. The nibble code of page 40 is also shown.

n γ = ζ1 ζ2 ζ3 ζ4 δ Nibble
1 1 10 100 1000 1 1000
2 010 110 1010 10010 0100 1001
3 011 111 1011 10011 0101 1010
4 00100 01000 1100 10100 01100 1011
5 00101 01001 1101 10101 01101 1100
6 00110 01010 1110 10110 01110 1101
7 00111 01011 1111 10111 01111 1110
8 0001000 011000 0100000 11000 00100000 1111
9 0001001 011001 0100001 11001 00100001 00011000

10 0001010 011010 0100010 11010 00100010 00011001
11 0001011 011011 0100011 11011 00100011 00011010
12 0001100 011100 0100100 11100 00100100 00011011
13 0001101 011101 0100101 11101 00100101 00011100
14 0001110 011110 0100110 11110 00100110 00011101
15 0001111 011111 0100111 11111 00100111 00011110
16 000010000 00100000 01010000 010000111 001011001 00011111

Table 2.21: ζ-Codes for 1 ≤ k ≤ 4 Compared to γ, δ and Nibble Codes.

A nibble (more accurately, nybble) is the popular term for a 4-bit number (or half a
byte). A nibble can therefore have 16 possible values, which makes it identical to a
single hexadecimal digit

94 2. Advanced Codes

The length of the zeta code of n with shrinking factor k is �1+ (log2 n)/k�(k +1)+
τ(n) where

τ(n) =
{

0, if (log2 n)/k − �(log2 n)/k� ∈ [0, 1/k),
1, otherwise.

Thus, this code is ideal for integers n that are distributed as

1 + τ(n)
n1+ 1

k

.

This is very close to a power law distribution with a parameter 1 + 1
k . The developers

show that the zeta code is complete, and they provide a detailed analysis of the expected
lengths of the zeta code for various values of k. The final results are summarized in
Table 2.22 where certain codes are recommended for various ranges of the parameter α
of the distribution.

α : < 1.06 [1.06, 1.08] [1.08, 1.11] [1.11, 1.16] [1.16, 1.27] [1.27, 1.57] [1.57, 2]
Code: δ ζ6 ζ5 ζ4 ζ3 ζ2 γ = ζ1

Table 2.22: Recommended Ranges for Codes.

2.13 Yamamoto’s Recursive Code
In 2000, Hirosuke Yamamoto came up with a simple, ingenious way [Yamamoto 00] to
improve the Elias omega code. As a short refresher on the omega code, we start with
the relevant paragraph from Section 2.4.

The omega code uses itself recursively to encode the prefix M , which is why it
is sometimes referred to as a recursive Elias code. The main idea is to prepend
the length of n to n as a group of bits that starts with a 1, then prepend the
length of the length, as another group, to the result, and continue prepending
lengths until the last length is 2 or 3 (and it fits in two bits). In order to
distinguish between a length group and the last, rightmost group (that of n
itself), the latter is followed by a delimiter of 0, while each length group starts
with a 1.
The decoder of the omega code reads the first two bits (the leftmost length group),

interprets its value as the length of the next group, and continues reading groups until a
group is found that is followed by the 0 delimiter. That group is the binary representation
of n.

This scheme makes it easy to decode the omega code, but is somewhat wasteful,
because the MSB of each length group is 1, and so the value of this bit is known in
advance and it acts only as a separator.

Yamamoto’s idea was to select an f -bit delimiter a (where f is a small positive
integer, typically 2 or 3) and use it as the delimiter instead of a single 0. In order to

2.13 Yamamoto’s Recursive Code 95

obtain a UD code, none of the length groups should start with a. Thus, the length
groups should be encoded with special variable-length codes that do not start with a.
Once a has been selected and its length f is known, the first step is to prepare all the
binary strings that do not start with a and assign each string as the code B̃a,f () of one
of the positive integers. Now, if a length group has the value n, then B̃a,f (n) is placed
in the codeword instead of the binary value of n.

We start with a simpler code that is denoted by Ba,f (n). As an example, we select
f = 2 and the 2-bit delimiter a = 00. The binary strings that do not start with 00 are
the following: the two 1-bit strings 0 and 1; the three 2-bit strings 01, 10, and 11; the six
3-bit strings 010, 011, 100, 101, 110, and 111; the 12 4-bit strings 0100, 1001, through
1111 (i.e., the 16 4-bit strings minus the four that start with 00), and so on. These
strings are assigned to the positive integers as listed in the second column of Table 2.23.
The third column of this table lists the first 26 B codes for a = 100.

n Ba,f (n) B̃a,f (n)
a = 00 a = 100 a = 00 a = 100

1 0 0 1 0
2 1 1 01 00
3 01 00 10 01
4 10 01 11 11
5 11 10 010 000
6 010 11 011 001
7 011 000 100 010
8 100 001 101 011
9 101 010 110 101

10 110 011 111 110
11 111 101 0100 111
12 0100 110 0101 0000
13 0101 111 0110 0001
14 0110 0000 0111 0010
15 0111 0001 1000 0011
16 1000 0010 1001 0100
17 1001 0011 1010 0101
18 1010 0100 1011 0110
19 1011 0101 1100 0111
20 1100 0110 1101 1010
21 1101 0111 1110 1011
22 1110 1010 1111 1100
23 1111 1011 01000 1101
24 01000 1100 01001 1110
25 01001 1101 01010 1111
26 01010 1110 01011 00000

Table 2.23: Some Ba,f (n) and B̃a,f (n) Yamamoto Codes.

One more step is needed. Even though none of the Ba,f (n) codes starts with a, it

96 2. Advanced Codes

may happen that a short Ba,f (n) code (a code whose length is less than f) followed by
another Ba,f (n) code will accidentally contain the pattern a. Thus, for example, the
table shows that B100,3(5) = 10 followed by B100,3(7) = 000 becomes the string 10|000
and may be interpreted by the decoder as 100|00 Thus, the B100,3(n) codes have
to be made UD by eliminating some of the short codes, those that are shorter than f
bits and have the values 1 or 10. Similarly, the single short B00,2(1) = 0 code should
be discarded. The resulting codes are designated B̃a,f (n) and are listed in the last two
columns of the table.

If the integers to be encoded are known not to exceed a few hundred or a few
thousand, then both encoder and decoder can have built-in tables of the B̃a,f (n) codes
for all the relevant integers. In general, these codes have to be computed “on the fly”
and the developer provides the following expression for them (the notation K [j] means
the integer K expressed in j bits, where some of the leftmost bits may be zeros).

B̃a,f (n) =

⎧
⎪⎪⎨

⎪⎪⎩

[n−M(j, f) + L(j, f)][j],
if M(j, f)− L(j, f) ≤ n < M(j, f)− L(j, f) + N(j, f, a),

[n−M(j, f − 1) + L(j + 1, f)][j],
if M(j, f)− L(j, f) + N(j, f, a) ≤ n < M(j + 1, f)− L(j + 1, f),

where M(j, f) = 2j − 2(j−f)+ , (t)+ = max(t, 0), L(j, f) = (f − 1) − (f − j)+, and
N(j, f, a) = �2j−fa�. Given a positive integer n, the first step in encoding it is to
determine the value of j by examining the inequalities. Once j is known, functions M
and L can be computed.

Armed with the B̃a,f (n) codes, the recursive Yamamoto code Ca,f (n) is easy to
describe. We select an f -bit delimiter a. Given a positive integer n, we start with the
group B̃a,f (n). Assuming that this group is n1 bits long, we prepend to it the length
group B̃a,f (n1 − 1). If this group is n2 bits long, we prepend to it the length group
B̃a,f (n2 − 1). This is repeated recursively until the last length group is B̃a,f (1). (This
code is always a single bit because it depends only on a, and the decoder knows this bit
because it knows a. Thus, in principle, the last length group can be omitted, thereby
shortening the codeword by one bit.) The codeword is completed by appending the
delimiter a to the right end. Table 2.24 lists some codewords for a = 00 and for a = 100.

The developer, Hirosuke Yamamoto, also proves that the length of a codeword
Ca,f (n) is always less than or equal to log∗

2 n + F (f)wf (n) + cf + δ(n). More impor-
tantly, for infinitely many integers, the length is also less than or equal to log∗

2 n + (1−
F (f))wf (n) + cf + 2δ(n), where F (f) = − log2(1− 2−f), cf = 5(f − 2)+ + f + 5F (f),

δ(n) ≤ log2 e

n

[
1 +

(w(n)− 1)(log2 e)w(n)−1

log2 n

]
≤ 4.7

n
,

and the log-star function log∗
2 n is the finite sum

log2 n + log2 log2 n + · · ·+ log2 log2 . . . log2︸ ︷︷ ︸
w(n)

n

where w(n) is the largest integer for which the compound logarithm is still nonnegative.

2.14 VLCs and Search Trees 97

n a = 00 a = 100
1 1 00 0 100
2 1 01 00 0 00 100
3 1 10 00 0 01 100
4 1 11 00 0 11 100
5 1 01 010 00 0 00 000 100
6 1 01 011 00 0 00 001 100
7 1 01 100 00 0 00 010 100
8 1 01 101 00 0 00 011 100
9 1 01 110 00 0 00 101 100

10 1 01 111 00 0 00 110 100
11 1 10 0100 00 0 00 111 100
12 1 10 0101 00 0 01 0000 100
13 1 10 0110 00 0 01 0001 100
14 1 10 0111 00 0 01 0010 100
15 1 10 1000 00 0 01 0011 100
16 1 10 1001 00 0 01 0100 100
17 1 10 1010 00 0 01 0101 100
18 1 10 1011 00 0 01 0110 100
19 1 10 1100 00 0 01 0111 100
20 1 10 1101 00 0 01 1010 100
21 1 10 1110 00 0 01 1011 100
22 1 10 1111 00 0 01 1100 100
23 1 11 01000 00 0 01 1101 100
24 1 11 01001 00 0 01 1110 100
25 1 11 01010 00 0 01 1111 100
26 1 11 01011 00 0 11 00000 100

Table 2.24: Yamamoto Recursive Codewords.

The important point (at least from a theoretical point of view) is that this recursive
code is shorter than log∗

2 n for infinitely many integers. This code can also be extended
to other number bases and is not limited to base-2 numbers.

2.14 VLCs and Search Trees
There is an interesting association between certain unbounded searches and prefix codes.
A search is a classic problem in computer science. Given a data structure, such as an
array, a list, a tree, or a graph, where each node contains an item, the problem is to
search the structure and find a given item in the smallest possible number of steps. The
following are practical examples of computer searches.

1. A two-player game. Player A chooses a positive integer n and player B has
to guess n by asking only the following type of question: Is the integer i less than n?
Clearly, the number of questions needed to find n depends on n and on the strategy
(algorithm) used by B.

98 2. Advanced Codes

2. Given a function y = f(x), find all the values of x for which the function equals
a given value Y (typically zero).

3. An online business stocks many items. Customers should be able to search for
an item by its name, price range, or manufacturer. The items are the nodes of a large
structure (normally a tree), and there must be a fast search algorithm that can find any
item among many thousands of items in a few seconds.

4. An Internet search engine faces a similar problem. The first part of such an
engine is a crawler that locates a vast number of Web sites, inputs them into a data
base, and indexes every term found. The second part is a search algorithm that should
be able to locate any term (out of many millions of terms) in just a few seconds. (There
is also the problem of ranking the results.) Internet users search for terms (such as
“variable-length codes”) and naturally prefer search engines that provide results in just
a few seconds.

Searching a data base, even a very large one, is considered a bounded search, because
the search space is finite. Bounded searches have been a popular field of research for
many years, and many efficient search methods are known and have been analyzed in
detail. In contrast, searching for a zero of a function is an example of unbounded search,
because the domain of the function is normally infinite. In their work [Bentley and
Yao 76], Jon Bentley and Andrew Yao propose several algorithms for searching a linearly
ordered unbounded table and show that each algorithm is associated with a binary string
that can be considered a codeword in a prefix code. This creates an interesting and
unexpected relation between searching and variable-length codes, two hitherto unrelated
areas of scientific endeavor. The authors restrict themselves to algorithms that search for
an integer n in an ordered table F (i) using only elementary tests of the form F (i) < n.

The simplest search method, for both bounded and unbounded searches, is linear
search. Given an ordered array of integers F (i) and an integer n, a linear search performs
the tests F (1) < n, F (2) < n,. . .until a match is found. The answers to the tests are
No, No,. . . , Yes, which can be expressed as the bitstring 11 . . . 10. Thus, a linear search
(referred to by its developers as algorithm B0) corresponds to the unary code.

The next search algorithm (designated B1) is an unbounded variation of the well-
known binary search. The first step of this version is a linear search that determines an
interval. This step starts with an interval [F (a), F (b)] and performs the test F (b) < n.
If the answer is No, then n is in this interval, and the algorithm executes its second step,
where n is located in this interval with a bounded binary search. If the answer is Yes,
then the algorithm computes another interval that starts at F (b + 1) and is twice as
wide as the previous interval. Specifically, the algorithm computes F (2i − 1) for i = 1,
2,. . . and each interval is [F (2i−1), F (2i − 1)].

Figure 2.25 (compare with Figures 1.12 and 1.13) shows how these intervals can
be represented as a binary search tree where the root and each of its right descendants
correspond to an index 2i − 1. The left son of each descendant is the root of a subtree
that contains the remaining indexes less than or equal to 2i−1. Thus, the left son of the
root is index 1. The left son of node 3 is the root of a subtree containing the remaining
indexes that are less than or equal to 3, namely 2 and 3. The left son of 7 is the root of
a subtree with 4, 5, 6, and 7, and so on.

The figure also illustrates how n = 12 is searched for and located by the B1 method.
The algorithm compares 12 to 1, 3, 7, and 15 (a linear search), with results No, No, No,

2.14 VLCs and Search Trees 99

1

1 1 1

0

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

9 13

8 10 12 14

8 9 10 11

11

12 13 14 15

15

Figure 2.25: Gamma Code and Binary Search.

and Yes, or 1110. The next step performs a binary search to locate 12 in the interval
[8, 15] with results 100. These results are listed as labels on the appropriate edges. The
final bitstring associated with 12 by this method is therefore 1110|100. This result is the
Elias gamma code of 12, as produced by the alternative construction method of page 74
(this construction produces codes different from those of Table 2.8, but the code lengths
are the same).

If m is the largest integer such that 2m−1 ≤ n < 2m, then the first step (a linear
search to determine m) requires m = �log2 n� + 1 tests. The second step requires
log2 2m−1 = m−1 = 2�log2 n� tests. The total number of tests is therefore 2�log2 n�+1,
which is the length of the gamma code (Equation (2.1)).

The third search method proposed by Bentley and Yao (their algorithm B2) is a
double binary search. The second step is the same, but the first step is modified to
determine m by constructing intervals that become longer and longer. The intervals
computed by method B1 start at 2i − 1 for i = 1, 2, 3, . . . , or 1, 3, 7, 15, 31,
Method B2 constructs intervals that start with numbers of the form 22i−1− 1 for i = 1,
2, 3, These numbers are 1, 7, 127, 32,767, 231 − 1, and so on. They become the
roots of subtrees as shown in Figure 2.26. There are fewer search trees, which speeds
up step 1, but they grow very fast. The developers show that the first step requires
1 + 2�log2 n� tests (compared to the m = �log2 n� + 1 tests required by B1) and the
second step requires �log2 n� tests (same as B1), for a total of

�log2 n�+ 2�log2(�log2 n�+ 1)�+ 1 = 1 + �log2 n�+ 2�log2 log2(2n)�.

The number of tests is identical to the length of the Elias delta code, Equation (2.2).
Thus, the variable-length code associated with this search tree is a variant of the delta
code. The codewords are different from those listed in Table 2.9, but the code is equiv-
alent because of the identical lengths.

Bentley and Yao go on to propose unbounded search algorithms Bk (k-nested binary
search) and U (ultimate). The latter is shown by [Ahlswede et al. 97] to be associated
with a modified Elias omega code. The authors of this paper also construct the binary
search trees for the Stout codes (Section 2.11).

100 2. Advanced Codes

1

1

4

4

5 5

2

2

3

4

5

7

16 64

12 24 48 86

8 9 10 11

32

32 63 64 127

127 32767

6

6

7 6

9

8 10

12 13 14 15

13

12 14

12

24 25 26 27

25

24 26

28 29 30 31

29

28 30

27

16 17 18 19

17

16 18

20 21 22 23

21

20 22

19

2
31−1

Figure 2.26: Delta Code and Binary Search.

2.15 Taboo Codes
The taboo approach to variable-length codes, as well as the use of the term “taboo,”
are the brainchilds of Steven Pigeon. The two types of taboo codes are described in
[Pigeon 01a,b] where it is shown that they are universal (more accurately, they can be
made as close to universal as desired by the choice of a parameter). The principle of the
taboo codes is to select a positive integer parameter n and reserve a pattern of n bits
to indicate the end of a code. This pattern should not appear in the code itself, which
is the reason for the term taboo. Thus, the taboo codes can be considered suffix codes.

The first type of taboo code is block-based and its length is a multiple of n. The
block-based taboo code of an integer is a string of n-bit blocks, where n is a user-selected
parameter and the last block is a taboo bit pattern that cannot appear in any of the
other blocks. An n-bit block can have 2n values, so if one value is reserved for the
taboo pattern, each of the remaining code blocks can have one of the remaining 2n − 1
bit patterns. In the second type of taboo codes, the total length of the code is not
restricted to a multiple of n. This type is called unconstrained and is shown to be
related to the n-step Fibonacci numbers.

We use the notation 〈n〉 : t to denote a string of n bits concatenated with the taboo
string t. Table 2.27 lists the lengths, number of codes, and code ranges as the codes get
longer when more blocks are added. Each row in this table summarizes the properties of
a range of codes. The number of codes in the kth range is (2n−1)k, and the total number
of codes gn(k) in the first k ranges is obtained as the sum of a geometric progression

gn(k) =
k∑

i=1

(2n − 1)i =
[(2n − 1)k − 1](2n − 1)

2n − 2
.

The case n = 1 is special and uninteresting. A 1-bit block can either be a 0 or a 1. If
we reserve 0 as the taboo pattern, then all the other blocks of codes cannot contain any
zeros and must be all 1’s. The result is the infinite set of codewords 10, 110, 1110,. . . ,

2.15 Taboo Codes 101

Codes Length # of values Range

〈n : t〉 2n 2n − 1 0 to (2n − 1)− 1
〈2n : t〉 3n (2n − 1)2 (2n − 1) to (2n − 1) + (2n − 1)2 − 1

...
...

〈kn : t〉 (k + 1)n (2n − 1)k
∑k−1

i=1 (2n − 1)i to −1 +
∑k

i=1(2
n − 1)i

...
...

Table 2.27: Structure of Block-Based Taboo Codes.

which is the unary code and therefore not universal (more accurately, the unary code is
∞-universal). The first interesting case is n = 2. Table 2.28 lists some codes for this
case. Notice that the pattern of all zeros is reserved for the taboo, but any other n-bit
pattern would do as well.

m Code m Code m Code m Code
0 01 00 4 01 10 00 8 10 11 00 12 01 01 01 00
1 10 00 5 01 11 00 9 11 01 00 13 01 01 10 00
2 11 00 6 10 01 00 10 11 10 00 14 01 01 11 00
3 01 01 00 7 10 10 00 11 11 11 00 . . .

Table 2.28: Some Block-Based Taboo Codes for n = 2.

In order to use this code in practice, we need simple, fast algorithms to encode and
decode it. Given an integer m, we first determine the number of n-bit blocks in the code
of m. Assuming that m appears in the kth range of Table 2.27, we can write the basic
relation m ≤ gn(k)− 1. This can be written explicitly as

m ≤ [(2n − 1)k − 1](2n − 1)
2n − 2

− 1

or

k ≥
log2

[
m + 2− m+1

2n−1

]

log2(2n − 1)
.

The requirement that m be less than gn(k) yields the value of k (which depends on both
n and m) as

kn(m) =

⎡

⎢⎢⎢

log2

[
m + 2− m+1

2n−1

]

log2(2n − 1)

⎤

⎥⎥⎥
.

Thus, the code of m consists of kn(m) blocks of n bits each plus the n-bit taboo block,
for a total of [kn(m) + 1]n bits. This code can be considered the value of the integer
c

def= m− gn(kn(m)− 1) represented in base (2n − 1), where each “digit” is n bits long.

102 2. Advanced Codes

Encoding: Armed with the values of n, m, and c, we can write the individual
values of the n-bit blocks bi that constitute the code of m as

bi =
[�c(2n − 1)i� mod (2n − 1)

]
+ 1, i = 0, 1, . . . , kn(m)− 1. (2.3)

The taboo pattern is the (kn(m) + 1)th block, block bkn(m). Equation (2.3) is the basic
relation for encoding integer m.

Decoding: The decoder knows the value of n and the taboo pattern. It reads n-bit
blocks bi until it finds the taboo block. The number of blocks read is k (rather kn(m))
and once k is known, decoding is done by

m = gn(k − 1) +
k−1∑

i=0

(bi − 1)(2n − 1)i. (2.4)

Equations (2.3) and (2.4) lend themselves to fast, efficient implementation. In
particular, decoding is easy. The decoder can read n-bit blocks bi and add terms to the
partial sum of Equation (2.4) until it reaches the taboo block, at which point it only has
to compute and add gn

(
kn(m)− 1

)
to the sum in order to obtain m.

The block-based taboo code is longer than the binary representation (beta code) of
the integers by n+ k

[
n− log2(2n− 1)

]
bits. For all values of n except the smallest ones,

2n−1 ≈ 2n, so this difference of lengths (the “waste” of the code) equals approximately
n. Even for n = 4, the waste is only n + 0.093k. Thus, for large integers m, the waste
is very small compared to m.

The developer of these codes, Steven Pigeon, proves that the block-based taboo
code can be made as close to universal as desired.

Let us overthrow the totems, break the taboos. Or better, let us consider them
cancelled. Coldly, let us be intelligent.

—Pierre Trudeau

Now, for the unconstrained taboo codes. The idea is to have a bitstring of length
l, the actual code, followed by a taboo pattern of n bits. The length l of the code is
independent of n and can even be zero. Thus, the total length of such a code is l +n for
l ≥ 0. The taboo pattern should not appear inside the l code bits and there should be a
separator bit at the end of the l-bit code part, to indicate to the decoder the start of the
taboo. In the block-based taboo codes, any bit pattern could serve as the taboo, but for
the unconstrained codes we have to choose a bit pattern that will prevent ambiguous
decoding. The two ideal patterns for the taboo are therefore all zeros or all 1’s, because
a string of all zeros can be separated from the preceding l bits by a single 1, and similarly
for a string of all 1’s. Other strings require longer separators. Thus, the use of all zeros
or 1’s as the taboo string leads to the maximum number of l-bit valid code strings and
we will therefore assume that the taboo pattern consists of n consecutive zeros.

As a result, an unconstrained taboo code starts with l bits (where l ≥ 0) that do
not include n consecutive zeros and that end with a separator bit of 1 (except when
l = 0, where the code part consists of no bits and there is no need for a separator). The
case n = 1 is special. In this case, the taboo is a single zero, the l bits preceding it

2.15 Taboo Codes 103

cannot include any zeros, so the unconstrained code reduces to the unary code of l 1’s
followed by a zero.

In order to figure out how to encode and decode these codes, we first have to
determine the number of valid bit patterns of l bits, i.e., patterns that do not include
any n consecutive zeros. We distinguish three cases.

1. The case l = 0 is trivial. The number of bit patterns of length zero is one, the
pattern of no bits.

2. The case 0 < l < n is simple. The string of l bits is too short to have any n
consecutive zeros. The last bit must be a 1, so the remaining l − 1 bits can have 2l−1

values.
3. When l ≥ n, we determine the number of valid l-bit strings (i.e., l-bit strings

that do not contain any substrings of n zeros) recursively. We denote the number of
valid strings by 〈〈 l

n 〉〉 and consider the following cases. When a valid l-bit string starts
with a 1 followed by l−1 bits, the number of valid strings is 〈〈 l−1

n 〉〉. When such a string
start with a 01, the number of valid strings is 〈〈 l−2

n 〉〉. We continue in this way until
we reach strings that start with 00 . . . 0︸ ︷︷ ︸

n−1

1, where the number of valid strings is 〈〈 l−n
n 〉〉.

Thus, the number of valid l-bit strings in this case is the sum shown in the third case of
Equation (2.5).

〈〈
l

n

〉〉
=

⎧
⎨

⎩

1 if l = 0,
2l−1 if l < n,∑n

i=1〈〈 l−i
n 〉〉 otherwise.

(2.5)

Table 2.29 lists some values of 〈〈 l
n 〉〉 and it is obvious that the second column (the values

of 〈〈 l
2 〉〉) consists of the well-known Fibonacci numbers. Thus, 〈〈 l

2 〉〉 = Fl+1. A deeper
look at the table shows that 〈〈 l

3 〉〉 = F
(3)
l+1, where F

(3)
l = F

(3)
l−1 + F

(3)
l−2 + F

(3)
l−3. This

column consists of the n-step Fibonacci numbers of order 3 (tribonaccis), a sequence
that starts with F

(3)
1 = 1, F

(3)
2 = 1, and F

(3)
3 = 2. Similarly, the 4th column consists

of tetrabonacci numbers, and the remaining columns feature the pentanacci, hexanacci,
heptanacci, and other n-step “polynacci” numbers.

The n-step Fibonacci numbers of order k are defined recursively by

F
(k)
l =

k∑

i=1

F (k)l−i, (2.6)

with initial conditions F (k)1 = 1 and F (k)i = 2i−2 for i = 2, 3, . . . , k. (As an aside,
the limit limk→∞ F (k) is a sequence that starts with an infinite number of 1’s, followed
by the powers of 2. The interested reader should also look for anti-Fibonacci numbers,
generalized Fibonacci numbers, and other sequences and numbers related to Fibonacci.)
We therefore conclude that 〈〈 l

n 〉〉 = F
(n)
l+1, a relation that is exploited by the developer of

these codes to prove that the unconstrained taboo codes are universal (more accurately,
can be made as close to universal as desired by increasing n).

Table 2.30 lists the organization, lengths, number of codes, and code ranges of some
unconstrained taboo codes, and Table 2.31 lists some of these codes for n = 3 (the taboo
string is shown in boldface).

104 2. Advanced Codes

〈〈 l
1 〉〉 〈〈 l

2 〉〉 〈〈 l
3 〉〉 〈〈 l

4 〉〉 〈〈 l
5 〉〉 〈〈 l

6 〉〉 〈〈 l
7 〉〉 〈〈 l

8 〉〉
〈〈 0n 〉〉 1 1 1 1 1 1 1 1

〈〈 1n 〉〉 1 1 1 1 1 1 1 1

〈〈 2n 〉〉 1 2 2 2 2 2 2 2

〈〈 3n 〉〉 1 3 4 4 4 4 4 4

〈〈 4n 〉〉 1 5 7 8 8 8 8 8

〈〈 5n 〉〉 1 8 13 15 16 16 16 16

〈〈 6n 〉〉 1 13 24 29 31 32 32 32

〈〈 7n 〉〉 1 21 44 56 61 63 64 64

〈〈 8n 〉〉 1 34 81 108 120 125 127 128

〈〈 9n 〉〉 1 55 149 208 236 248 253 255

〈〈 10n 〉〉 1 89 274 401 464 492 504 509

Table 2.29: The First Few Values of 〈〈 l
n 〉〉.

Codes Length # of values Range

t n 〈〈 0n 〉〉 0 to 〈〈 0n 〉〉 − 1

〈1〉 : t 1 + n 〈〈 1n 〉〉 〈〈 0n 〉〉 to 〈〈 0n 〉〉+ 〈〈 1n 〉〉 − 1
...

...

〈l〉 : t l + n 〈〈 l
n 〉〉

∑l−1
i=0〈〈 i

n 〉〉 to −1 +
∑l

i=0〈〈 i
n 〉〉

...
...

Table 2.30: Organization and Features of Unconstrained Taboo Codes.

m Code m Code m Code m Code
0 000 7 111000 14 1111000 21 10011000
1 1000 8 0011000 15 00101000 22 10101000
2 01000 9 0101000 16 00111000 23 10111000
3 11000 10 0111000 17 01001000 24 11001000
4 001000 11 1001000 18 01011000 25 11011000
5 011000 12 1011000 19 01101000 26 11101000
6 101000 13 1101000 20 01111000 27 . . .

Table 2.31: Unconstrained Taboo Codes for n = 3.

And I promise you, right here and now, no subject will ever be taboo. . . except, of
course, the subject that was just under discussion.

—Quentin Tarantino, Kill Bill, Vol. 1

The main reference [Pigeon 01b] describes the steps for encoding and decoding these
codes.

2.16 Wang’s Flag Code 105

2.16 Wang’s Flag Code

Similar to the taboo code, the flag code of Muzhong Wang [Wang 88] is based on a flag of
f zeros appended to the codewords. The name suffix code is perhaps more appropriate,
because the flag must be the suffix of a codeword and cannot appear anywhere inside
it. However, this type of suffix code is not the opposite of a prefix code.

The principle is to scan the positive integer n that is being encoded and append
a single 1 to each sequence of f − 1 zeros found in it. This effectively removes any
occurrences of substrings of f consecutive zeros. Before this is done, n is reversed, so
that its LSB becomes a 1. This guarantees that the flag will be preceded by a 1 and will
therefore be easily recognized by the decoder.

We use the notation 0f for a string of f zeros, select a value f ≥ 2, and look at
two examples. Given n = 66 = 10000102 and f = 3, we reverse n to obtain 0100001
and scan it from left to right, appending a 1 to each string of two consecutive zeros.
The result is 010010011 to which is appended the flag. Thus, 010010011|000. Given
n = 288 = 1001000002, we reverse it to 000001001, scan it and append 001001010011,
and append the flag 001001010011|000.

It is obvious that such codewords are easy to decode. The decoder knows the value
of f and looks for a string of f − 1 zeros. If such a string is followed by a 0, then it is
the flag. The flag is removed and the result is reversed. If such a string is followed by a
1, the 1 is removed and the scan continues.

This code, as originally proposed by Wang, is slow to implement in software because
reversing an m-bit string requires �m/2� steps where a pair of bits is swapped in each
step. A possible improvement is to move the MSB (which is always a 1) to the right
end, where it acts as an intercalary bit to separate the code bits from the flag.

Reference [Wang 88] shows that this code is universal, and for large values of n its
asymptotic efficiency, defined by Wang as the limit

Γ = lim
n→∞ sup

log2(n + 1)
L(n)

, (2.7)

(where L(n) is the length of the Wang code of n) approaches 1.
The codeword length L(n) increases with n, but not monotonically because it de-

pends on the number of consecutive zeros in n and on the relation of this number to f .
Recall that the binary representation of a power of 2 is a single 1 followed by several
consecutive zeros. Thus, integers of the form 2k or slightly bigger tend to have many
consecutive zeros. As a result, the Wang codewords of 2k and of its immediate succes-
sors tend to be longer than the codewords of its immediate predecessors because of the
many intercalary 1’s. On the other hand, the binary representation of the integer 2k− 1
consists of k consecutive 1’s, so such numbers and their immediate predecessors tend to
have few consecutive zeros, which is why their Wang codewords tend to be shorter. We
therefore conclude that the lengths of Wang codewords feature jumps at n values that
are powers of 2.

It is easy to figure out the length of the Wang code for two types of numbers. The
integer n = 2k − 1 = 1k has no zeros in its binary representation, so its Wang code
consists of the original k bits plus the f -bit flag. Its successor n + 1 = 2k = 10k, on the

106 2. Advanced Codes

other hand, has k consecutive zeros, so �k/f� intercalary bits have to be inserted. The
length of the codeword is therefore the original k+1 bits, plus the extra �k/f� bits, plus
the flag, for a total of k + 1 + �k/f�+ f . Thus, when n passes through a value 2k, the
codeword length increases by �k/f�+ 1 bits.

Reference [Yamamoto and Ochi 91] shows that in the special case where each bit bj of
n (except the MSB b0, which is effectively unused by this code) is selected independently
with probability P (bj = 0) = P (bj = 1) = 1/2 for j = 1, 2, . . . , M , the average codeword
length L(n) depends on M and f in a simple way (compare with Equation (2.9))

L(n) =
{

M + 1 + f if M ≤ f − 2,
M + 1 +

∑M−f+2
j=1 lj + f, if M ≥ f − 1,

where the quantity lj is defined recursively by

lj =

⎧
⎨

⎩

0, j ≤ 0,
1

2f−1 , j = 1,
1

2f−1

[1
2 + lj−(f−1)

]
, 2 ≤ j ≤M − f + 2.

(2.8)

2.17 Yamamoto Flag Code
Wang’s code requires reversing the bits of the integer n before it is encoded and reversing
it again as the last step in its decoding. This code can be somewhat improved if we
simply move the MSB of n (which is always a 1) to its right end, to separate the codeword
from the flag. The fact that the MSB of n is included in the codeword of n introduces
a slight redundancy because this bit is known to be a 1. This bit is needed in Wang’s
code, because it helps to identify the flag at the end of a codeword. The flag code of
this section, due to Hirosuke Yamamoto and Hiroshi Ochi [Yamamoto and Ochi 91], is
more complex to understand and implement, but is faster to encode and decode and
does not include the MSB of n. It is therefore slightly shorter on average. In addition,
this code is a true flag code, because it is UD even though the bit pattern of the flag may
appear inside a codeword. We first explain the encoding process in the simple case f = 3
(a 3-bit flag).

We start with a positive integer n = b0b1b2 . . . bM and the particular 3-bit flag
p = p1p2p3 = 100. We ignore b0 because it is a 1. Starting at b1, we compare overlapping
pairs of bits bibi+1 to the fixed pair p1p2 = 10. If bibi+1 = 10, we append bi to the
codeword-so-far and continue with the pair bi+1bi+2. If, however, bibi+1 = 10, we
append the triplet 101 (which is bibi+1pf) to the codeword-so-far and continue with the
pair bi+2bi+3. Notice that bibi+1pf = 101 is different from the flag, a fact exploited by
the decoder. At the end, when all the pairs bibi+1 have been checked, the LSB bM of n
may be left over. This bit is appended to the codeword-so-far, and is followed by the
flag.

We encode n = 325 = 1010001012 as an example. Its nine bits are numbered
b0b1 . . . b8 with b0 = 1. The codeword-so-far starts as an empty string. The first pair is
b1b2 = 01 = 10, so b1 = 0 is appended to the codeword-so-far. The next pair is b2b3 = 10,

2.17 Yamamoto Flag Code 107

so the triplet 101 is appended to the codeword-so-far, which becomes 0|101. The next
pair is b4b5 = 00 = 10, so b4 = 0 is appended to the codeword-so-far. The next pair is
b5b6 = 01 = 10, so b5 = 0 is appended to the codeword-so-far, which becomes 0|101|0|0.
The next pair is b6b7 = 10, so the triplet 101 is appended to the codeword-so-far, which
becomes 0|101|0|0|101. Once b6 and b7 have been included in the codeword-so-far, only
b8 = 1 remains and it is simply appended, followed by the flag bits. The resulting
codeword is 0|101|0|0|101|1|100 where the two bits in boldface are the complement of
p3. Notice that the flag pattern 100 also appears inside the codeword.

It is now easy to see how such a codeword can be decoded. The decoder initializes
the decoded bitstring to 1 (the MSB of n). Given a string of bits a1a2 . . . whose length
is unknown, the decoder scans it, examining overlapping triplets of bits and looking for
the pattern aiai+1pf = 101. When such a triplet is found, its last bit is discarded and
the first two bits 10 are appended to the decoded string. The process stops when the
flag is located.

In our example, the decoder appends a1 = 0 to the decoded string. It then locates
a2a3a4 = 101, discards a4, and appends a3a4 to the decoded string. Notice that the
codeword contains the flag pattern 100 in bits a4a5a6 but this pattern disappears once
a4 has been discarded. The only potential problem in decoding is that an f -bit pattern
of the form . . . aj−1aj |p1p2 . . . (i.e., some bits from the end of the codeword, followed
by some bits from the start of the flag) will equal the flag. This problem is solved by
selecting the special flag 100. For the special case f = 3, it is easy to verify that bit
patterns of the form xx|1 or x|10 cannot equal 100. In the general case, a flag of the
form 10f−1 (a 1 followed by f − 1 zeros) is selected, and again it is easy to see that no
f -bit string of the form xx . . . x|100 . . . 0 can equal the flag.

We are now ready to present the general case, where f can have any value greater
than 1. Given a positive integer n = b0b1b2 . . . bM and the f -bit flag p = p1p2 . . . pf =
10f−1, the encoder initializes the codeword-so-far C to the empty string and sets a
counter t to 1. It then performs the following loop:

1. If t > M − f + 2 then [if t ≤M, then C ← C + btbt+1 . . . bM endif],
C ← C + p1p2 . . . pf, Stop.

endif

2. If btbt+1 · · · bt+(f−2) = p1p2 . . . pf−1
then [C ← C + bt, t← t + 1],
else [C ← C + btbt+1 . . . bt+(f−2)pf, t← t + (f − 1)]

endif
Go to step 1.

Step 1 should read: If no more tuples remain [if some bits remain, append them to
C, endif], append the flag to C. Stop.

Step 2 should read: If a tuple (of f − 1 bits from n) does not equal the most-
significant f − 1 bits of the flag, append the next bit bt to C and increment t by 1. Else,
append the entire tuple to C, followed by the complement of pf , and increment t by
f − 1. Endif. Go to step 1.

The developers of this code prove that the choice of the bit pattern 10f−1, or
equivalently 01f−1, for the flag guarantees that no string of the form xx . . . x|p1p2 . . . pj

108 2. Advanced Codes

can equal the flag. They also propose flags of the form 120f−2 for cases where f ≥ 4.
The decoder initializes the decoded string D to 1 (the MSB of n) and a counter s

to 1. It then iterates the following step until it finds the flag and stops.

If asas+1 . . . as+(f−2) = p1p2 . . . pf−1

then D ← D + as, s← s + 1,
else
[if as+(f−1) = pf

then Stop,
else D ← D + asas+1 . . . as+(f−2), s← s + f

endif]
endif

The developers also show that this code is universal and is almost asymptotically
optimal in the sense of Equation (2.7). The codeword length L(n) increases with n, but
not monotonically, and is bounded by

�log2 n�+ f ≤ L(n) ≤ �log2 n�+
�log2 n�
f − 1

+ f ≤ f

f − 1
log2 n + f.

In the special case where each bit bj of n (except the MSB b0, which is not used by
this code) is selected independently with probability P (bj = 0) = P (bj = 1) = 1/2 for
j = 1, 2, . . . , M , the average codeword length L(n) depends on M and f in a simple way
(compare with Equation (2.8))

L(n) =
{

M + f if M ≤ f − 2,
M + M−f+2

2f−1 + f, if M ≥ f − 1. (2.9)

Table 2.32 lists some of the Yamamoto codes for f = 3 and f = 4. These are
compared with the similar S(r+1, 01r) codes of Capocelli (Section 2.20.1 and Table 2.37).

Recall that the encoder inserts the intercalary bit pf whenever it finds the pattern
p1p2 . . . pf−1 in the integer n that is being encoded. Thus, if f is small (a short flag),
large values of n may be encoded into long codewords because of the many intercalary
bits. On the other hand, large f (a long flag) results in long codewords for small values
of n because the flag has to be appended to each codeword. This is why a scheme where
the flag starts small and becomes longer with increasing n seems ideal. Such a scheme,
dubbed dynamically-variable-flag-length (DVFL), has been proposed by Yamamoto and
Ochi as an extension of their original code.

The idea is to start with an initial flag length f0 and increment it by 1 at certain
points. A function T (f) also has to be chosen that satisfies T (f0) ≥ 1 and T (f + 1) −
T (f) ≥ f − 1 for f ≥ f0. Given a large integer n = b0b1 . . . bM , the encoder (and also
the decoder, working in lockstep) will increment f when it reaches bits whose indexes
equal T (f0), T (f0 + 1), T (f0 + 2), and so on. Thus, bits b1b2 . . . bT (f0) of n will be
encoded with a flag length f0, bits bT (f0)+1bT (f0)+2 . . . bT (f0+1) will be encoded with a
flag length f0 + 1, and so on. In the original version, the encoder maintains a counter
t and examines the f − 1 bits starting at bit bt. These are compared to the first f − 1
bits 10f−2 of the flag. In the extended version, f is determined by the counter t and

2.17 Yamamoto Flag Code 109

n S(3, 011) Y3(n) S(4, 0111) Y4(n)

1 011 011 0111 0111
2 0 011 0 011 0 0111 0 0111
3 1 011 1 011 1 0111 1 0111
4 00 011 00 011 00 0111 00 0111
5 01 011 010 011 01 0111 01 0111
6 10 011 10 011 10 0111 10 0111
7 11 011 11 011 11 0111 11 0111
8 000 011 000 011 000 0111 000 0111
9 001 011 0010 011 001 0111 001 0111

10 010 011 0100 011 010 0111 010 0111
11 100 011 0101 011 011 0111 0110 0111
12 101 011 100 011 100 0111 100 0111
13 110 011 1010 011 101 0111 101 0111
14 111 011 110 011 110 0111 110 0111
15 0000 011 111 011 111 0111 111 0111
16 0001 011 0000 011 0000 0111 0000 0111
17 0010 011 00010 011 0001 0111 0001 0111
18 0100 011 00100 011 0010 0111 0010 0111
19 0101 011 00101 011 0011 0111 00110 0111
20 1000 011 01000 011 0100 0111 0100 0111
21 1001 011 010010 011 0101 0111 0101 0111
22 1010 011 01010 011 0110 0111 01100 0111
23 1100 011 01011 011 1000 0111 01101 0111
24 1101 011 1000 011 1001 0111 1000 0111
25 1110 011 10010 011 1010 0111 1001 0111
26 1111 011 10100 011 1011 0111 1010 0111
27 00000 011 10101 011 1100 0111 10110 0111
28 00001 011 1100 011 1101 0111 1100 0111
29 00010 011 11010 011 1110 0111 1101 0111
30 00100 011 1110 011 1111 0111 1110 0111
31 00101 011 1111 011 00000 0111 1111 0111
32 01000 011 00000 011 00001 0111 00000 0111

Table 2.32: Some Capocelli and Yamamoto Codes for f = 3 and f = 4.

the function T by solving the inequality T (f − 1) < t ≤ T (f). In the last step, the
flag 10fM −1 is appended to the codeword, where fM is determined by the inequality
T (fM − 1) < M + 1 ≤ T (fM). The encoding steps are as follows:

1. Initialize f ← f0, t← 1, and the codeword C to the empty string.

2. If t > M − f + 2
then [if t ≤M then C ← C + btbt+1 . . . bM endif],

[if M + 1 > T (f) then f ← f + 1 endif],
C ← C + 10f−1, Stop.

endif.

110 2. Advanced Codes

3. If btbt+1 . . . bt+(f−2) = 10f−2

then C ← C + bt, t← t + 1,
[if t > T (f) then f ← f + 1 endif]

else C ← C + btbt+1 . . . bt+(f−2)1,
t← t + (f − 1),
[if t > T (f) then f ← f + 1 endif]

endif, Go to step 2.

The decoding steps are the following:

1. Initialize f ← f0, t← 1, s← 1, D ← 1.

2. If asas+1 . . . as+(f−2) = 10f−2

then D ← D + as, s← s + 1, t← t + 1,
[if t > T (f) then f ← f + 1 endif],

else [if as+(f−1) = 0 then Stop
else

D ← D + asas+1 . . . as+(f−2), s← s + f,
t← t + (f − 1), [if t > T (f) then f ← f + 1 endif]

endif]
endif, Go to step 2.

The choice of function T (f) is the next issue. The authors show that a function of
the form T (f) = Kf(f − 1), where K is a nonnegative constant, results in an asymp-
totically optimal DVFL. There are other functions that guarantee the same property of
DVFL, but the point is that varying f , while generating short codewords, also elimi-
nates one of the chief advantages of any flag code, namely its robustness. If the length
f of the flag is increased during the construction of a codeword, then any future error
may cause the decoder to lose synchronization and may propagate indefinitely through
the string of codewords. It seems that, in practice, the increased reliability achieved by
synchronization with a fixed f overshadows the savings produced by a dynamic encoding
scheme that varies f .

2.18 Number Bases
This short section is a digression to prepare the reader for the Fibonacci and Goldbach
codes that follow. Decimal numbers use base 10. The number 203710, for example, has
a value of 2 × 103 + 0 × 102 + 3 × 101 + 7 × 100. We can say that 2037 is the sum
of the digits 2, 0, 3, and 7, each weighted by a power of 10. Fractions are represented
in the same way, using negative powers of 10. Thus, 0.82 = 8 × 10−1 + 2 × 10−2 and
300.7 = 3× 102 + 7× 10−1.

Binary numbers use base 2. Such a number is represented as a sum of its digits,
each weighted by a power of 2. Thus, 101.112 = 1×22+0×21+1×20+1×2−1+1×2−2.

Since there is nothing special about 10 or 2 (actually there is, because 2 is the
smallest integer that can be a base for a number system and 10 is the number of our

2.18 Number Bases 111

fingers), it should be easy to convince ourselves that any positive integer n > 1 can
serve as the basis for representing numbers. Such a representation requires n “digits”
(if n > 10, we use the ten digits and the letters A, B, C, . . .) and represents the number
d3d2d1d0.d−1 as the sum of the digits di, each multiplied by a power of n, thus d3n

3 +
d2n

2 + d1n
1 + d0n

0 + d−1n
−1. The base of a number system does not have to consist of

powers of an integer but can be any superadditive sequence that starts with 1.
Definition: A superadditive sequence a0, a1, a2, . . . is one where any element ai is

greater than the sum of all its predecessors. An example is 1, 2, 4, 8, 16, 32, 64, . . .where
each element equals 1 plus the sum of all its predecessors. This sequence consists of the
familiar powers of 2, so we know that any integer can be expressed by it using just the
digits 0 and 1 (the two bits). Another example is 1, 3, 6, 12, 24, 50, . . . , where each
element equals 2 plus the sum of all its predecessors. It is easy to see that any integer
can be expressed by it using just the digits 0, 1, and 2 (the three trits).

Given a positive integer k, the sequence 1, 1 + k, 2 + 2k, 4 + 4k, . . . , 2i(1 + k) is
superadditive, because each element equals the sum of all its predecessors plus k. Any
nonnegative integer can be represented uniquely in such a system as a number x . . . xxy,
where x are bits and y is a single digit in the range [0, k].

In contrast, a general superadditive sequence, such as 1, 8, 50, 3102 can be used
to represent integers, but not uniquely. The number 50, e.g., equals 8 × 6 + 1 + 1,
so it can be represented as 0062 = 0 × 3102 + 0 × 50 + 6 × 8 + 2 × 1, but also as
0100 = 0× 3102 + 1× 50 + 0× 8 + 0× 1.

It can be shown that 1 + r + r2 + · · · + rk is less than rk+1 for any real number
r > 1. This implies that the powers of any real number r > 1 can serve as the base of a
number system using the digits 0, 1, 2, . . . , d for some d < r.

The number φ = 1
2 (1 +

√
5) ≈ 1.618 is the well-known golden ratio. It can serve as

the base of a number system, with 0 and 1 as the digits. Thus, for example, 100.1φ =
φ2 + φ−1 ≈ 3.2310.

Some real bases have special properties. For example, any positive integer R can
be expressed as R = b1F1 + b2F2 + b3F3 + b4F5 + b5F8 + b6F13 · · ·, where bi are either
0 or 1, and Fi are the Fibonacci numbers 1, 2, 3, 5, 8, 13, This representation has
the interesting property, known as Zeckendorf’s theorem [Zeckendorf 72], that the string
b1b2 . . . does not contain any adjacent 1’s. This useful property, which is the basis for
the Goldbach codes (Section 2.21) is easy to prove. If an integer I in this representation
has the form . . . 01100 . . ., then because of the definition of the Fibonacci numbers, I
can be written . . . 00010

Examples are the integer 5, whose Fibonacci representation is 0001 and 33 = 1 +
3 + 8 + 21, which is expressed in the Fibonacci base as the 7-bit number 1010101.
Section 2.15 discusses the n-step Fibonacci numbers, defined by Equation (2.6).

The Australian Aboriginals use a number of languages, some of which employ binary
or binary-like counting systems. For example, in the Kala Lagaw Ya language, the
numbers 1 through 6 are urapon, ukasar, ukasar-urapon, ukasar-ukasar, ukasar-ukasar-
urapon, and ukasar-ukasar-ukasar.

The familiar terms “dozen” (12) and “gross” (twelve dozen) originated in old
duodecimal (base 12) systems of measurement.

Computers use binary numbers mostly because it is easy to design electronic circuits
with just two states, as opposed to ten states.

112 2. Advanced Codes

Leonardo Pisano Fibonacci (1170–1250)

Leonard of Pisa (or Fibonacci), was an Italian mathematician, often considered the
greatest mathematician of the Middle Ages. He played an important role in reviving
ancient mathematics and also made significant original contri-
butions. His book, Liber Abaci, introduced the modern decimal
system and the use of Arabic numerals and the zero into Europe.

Leonardo was born in Pisa around 1170 or 1180 (he died
in 1250). His father Guglielmo was nicknamed Bonaccio (the
good natured or simple), which is why Leonardo is known to-
day by the nickname Fibonacci (derived from filius Bonacci, son
of Bonaccio). He is also known as Leonardo Pisano, Leonardo
Bigollo, Leonardi Bigolli Pisani, Leonardo Bonacci, and Leonardo
Fibonacci.

The father was a merchant (and perhaps also the consul for Pisa) in Bugia, a port
east of Algiers (now Bejäıa, Algeria), and Leonardo visited him there while still a boy.
It seems that this was where he learned about the Arabic numeral system.

Realizing that representing numbers with Arabic numerals rather than with Roman
numerals is easier and greatly simplifies the arithmetic operations, Fibonacci traveled
throughout the Mediterranean region to study under the leading Arab mathematicians
of the time. Around 1200 he returned to Pisa, where in 1202, at age 32, he published
what he had learned in Liber Abaci, or Book of Calculation.

Leonardo became a guest of the Emperor Frederick II, who enjoyed mathematics
and science. In 1240, the Republic of Pisa honored Leonardo, under his alternative name
of Leonardo Bigollo, by granting him a salary.

Today, the Fibonacci sequence is one of the best known mathematical objects. This
sequence and its connection to the golden ratio φ = 1

2 (1 +
√

5) ≈ 1.618 have been
studied extensively and the mathematics journal Fibonacci Quarterly is dedicated to
the Fibonacci and similar sequences. The publication [Grimm 73] is a short biography
of Fibonacci.

2.19 Fibonacci Code

The Fibonacci code, as its name suggests, is closely related to the Fibonacci represen-
tation of the integers. The Fibonacci code of the positive integer n is the Fibonacci
representation of n with an additional 1 appended to the right end. Thus, the Fibonacci
code of 5 is 0001|1 and that of 33 is 1010101|1. It is obvious that such a code ends with
a pair 11, and that this is the only such pair in the codeword (because the Fibonacci
representation does not have adjacent 1’s). This property makes it possible to decode
such a code unambiguously, but also causes these codes to be long, because not having
adjacent 1’s restricts the number of possible binary patterns.

2.19 Fibonacci Code 113

1 11 7 01011
2 011 8 000011
3 0011 9 100011
4 1011 10 010011
5 00011 11 001011
6 10011 12 101011

Table 2.33: Twelve Fibonacci Codes.

Table 2.33 lists the first 12 Fibonacci codes.
Decoding. Skip bits of the code until a pair 11 is reached. Replace this 11 by 1.

Multiply the skipped bits by the values . . . , 13, 8, 5, 3, 2, 1 (the Fibonacci numbers),
and add the products. Obviously, it is not necessary to do any multiplication. Simply
use the 1 bits to select the proper Fibonacci numbers and add.

The Fibonacci codes are long, but have the advantage of being more robust than
most other variable-length codes. A corrupt bit in a Fibonacci code may change a pair
of consecutive bits from 01 or 10 to 11 or from 11 to 10 or 01. In the former case, a code
may be read as two codes, while in the latter case two codes will be decoded as a single
code. In either case, the slippage will be confined to just one or two codewords and will
not propagate further.

The length of the Fibonacci code for n is less than or equal to 1+�logφ

√
5n� where

φ is the golden ratio (compare with Equation (1.1)).
Figure 2.34 represents the lengths of two Elias codes and the Fibonacci code graph-

ically and compares them to the length of the standard binary (beta) code.
In [Fraenkel and Klein 96] (and also [Fraenkel and Klein 85]), the authors denote

this code by C1 and show that it is universal, with c1 = 2 and c2 = 3, but is not
asymptotically optimal because c1 > 1. They also prove that for any length r ≥ 1, there
are Fr codewords of length r + 1 in C1. As a result, the total number of codewords of
length up to and including r is

∑r−1
i=1 Fi = Fr+1 − 1. (See also Figure 2.41.)

A P-code is a set of codewords that end with the same pattern P (the pattern is
the suffix of the codewords) and where no codeword includes the pattern anywhere else.
Given a k-bit binary pattern P , the set of all binary strings of length ≥ k in which P
occurs only as a suffix is called the set generated by P and is denoted by L(P). In
[Berstel and Perrin 85] this set is called a semaphore code. All codewords in the C1

code end with the pattern P = 11, so this code is L(11).
The next Fibonacci code proposed by Fraenkel and Klein is denoted by C2 and is

constructed from C1 as follows:

1. Each codeword in C1 ends with two consecutive 1’s; delete one of them.
2. Delete all the codewords that start with 0.

Thus, the first few C2 codewords, constructed with the help of Table 2.33, are 1,
101, 1001, 10001, 10101, 100001, and 101001. An equivalent procedure to construct this
code is the following:

1. Delete the rightmost 1 of every codeword in C1.
2. Prepend 10 to every codeword.
3. Include 1 as the first codeword.

114 2. Advanced Codes

10 100 1000

5

10

15

20

Gamma
Length

Fib

Delta Binary

n

(* Plot the lengths of four codes
1. staircase plots of binary representation *)

bin[i_] := 1 + Floor[Log[2, i]];
Table[{Log[10, n], bin[n]}, {n, 1, 1000, 5}];
g1 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{5, 5}]}]
(* 2. staircase plot of Fibonacci code length *)
fib[i_] := 1 + Floor[Log[1.618, Sqrt[5] i]];
Table[{Log[10, n], fib[n]}, {n, 1, 1000, 5}];
g2 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
(* 3. staircase plot of gamma code length*)
gam[i_] := 1 + 2Floor[Log[2, i]];
Table[{Log[10, n], gam[n]}, {n, 1, 1000, 5}];
g3 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{2, 2}]}]
(* 4. staircase plot of delta code length*)
del[i_] := 1 + Floor[Log[2, i]] + 2Floor[Log[2, Log[2, i]]];
Table[{Log[10, n], del[n]}, {n, 2, 1000, 5}];
g4 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{6, 2}]}]
Show[g1, g2, g3, g4, PlotRange -> {{0, 3}, {0, 20}}]

Figure 2.34: Lengths of Binary, Fibonacci and Two Elias Codes.

A simple check verifies the equivalence of the two constructions. Code C2 is not a
straightforward Fibonacci code as is C1, but it can be termed a Fibonacci code, because
the interior bits of each codeword correspond to Fibonacci numbers. The code consists
of one codeword of length 1, no codewords of length 2, and Fr−2 codewords of length r
for any r ≥ 3.

The C2 code is not a prefix code, but is UD. Individual codewords are identified by
the decoder because each starts and ends with a 1. Thus, two consecutive 1’s indicate
the boundary between codewords. The first codeword introduces a slight complication,
but can be handled by the decoder. A string of the form . . . 011110 . . . is interpreted by
the decoder as . . . 01|1|1|10 . . ., i.e., two consecutive occurrences of the codeword 1.

The C2 code is also more robust than C1. A single error cannot propagate far
because the decoder is looking for the pattern 11. The worst case is a string of the

2.19 Fibonacci Code 115

form . . . xyz . . . = . . . 1|10 . . . 01|1|10 . . . 01|1 . . . where the middle 1 gets corrupted to a
0. This results in . . . 1|10 . . . 01010 . . . 01|1 . . . which is interpreted by the decoder as
one long codeword. The three original codewords xyz are lost, but the error does not
propagate any further. Other single errors (corrupted or lost bits) result in the loss of
only two codewords.

The third Fibonacci code described in [Fraenkel and Klein 96] is denoted by C3 and
is constructed from C1 as follows:

1. Delete the rightmost 1 of every codeword of C1.
2. For every r ≥ 1, select the set of C1 codewords of length r, duplicate the set,

and distinguish between the two copies by prepending a 10 to all the codewords in one
copy and a 11 to all the codewords in the other copy.

This results in the codewords 101, 111, 1001, 1101, 10001, 10101, 11001, 11101,
100001, 101001, 100101, 110001, It is easy to see that every codeword of C3 starts
with a 1, has at most three consecutive 1’s (and then they appear in the prefix), and
every codeword except the second ends with 01. The authors show that for any r ≥ 3
there are 2Fr−2 codewords. It is easy to see that C3 is not a prefix code because, for
example, codeword 111 is also the prefix of 11101. However, the code is UD. The decoder
first checks for the pattern 111 and interprets it depending on the bit that follows. If
that bit is 0, then this is a codeword that starts with 111; otherwise, this is the codeword
111 followed by another codeword. If the current pattern is not 111, the decoder checks
for 011. Every codeword except 111 ends with 01, so the pattern 01|1 indicates the end
of a codeword and the start of the next one. This pattern does not appear inside any
codeword.

Given an r-bit codeword y1y2 . . . yr (where yr = 1), the developers show that its
index (i.e., the integer whose codeword it is) is given by

2Fr−1 − 2 + y2Fr−2 +
r∑

i=3

yiFi−1 − Fr−1 + 1

=
r+2∑

i=3

yiFi−1 + (y2 − 1)Fr−2 − 1,

where yr+1 = 1 is the leftmost bit of the next codeword.
The developers compare the three Fibonacci codes with the Huffman code using

English text of 100,000 words collected from many different sources. Letter distributions
were computed and were used to assign Huffman, C1, C2, and C3 codes to the 26 letters.
The average lengths of the codes were 4.185, 4.895, 5.298, and 4.891 bits/character,
respectively. The Huffman code has the shortest length, but is vulnerable to storage
and transmission errors. The conclusion is that the three Fibonacci codes are good
candidates for compressing data in applications where robustness is more important
than optimal compression.

It is interesting to note that the Fibonacci sequence can be generalized by adding
a parameter. An m-step Fibonacci number equals the sum of its m immediate prede-
cessors (Equation (2.6)). Thus, the common Fibonacci numbers are 2-step. The m-step
Fibonacci numbers can be used to construct order-m Fibonacci codes (Section 2.20),
but none of these codes is asymptotically optimal.

116 2. Advanced Codes

The anti-Fibonacci numbers are defined recursively as f(1) = 1, f(2) = 0, and f(k +
2) = f(k) − f(k + 1). The sequence starts with 1, 0, 1, −1, 2, −3, 5, −8, This
sequence is also obtained when the Fibonacci sequence is extended backward from 0.
Thus,

. . .− 8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8,

In much the same way that the ratios of successive Fibonacci numbers converge to φ,
the ratios of successive anti-Fibonacci numbers converge to 1/φ.

2.20 Generalized Fibonacci Codes
The Fibonacci code of Section 2.19 is elegant and robust. The generalized Fibonacci
codes presented here, due to Alberto Apostolico and Aviezri Fraenkel [Apostolico and
Fraenkel 87], are also elegant, robust, and UD. They are based on m-step Fibonacci
numbers (sometimes also called generalized Fibonacci numbers). The authors show
that these codes are easy to encode and decode and can be employed to code integers
as well as arbitrary, unbound bit strings. (The MSB of an integer is 1, but the MSB of
an arbitrary string can be any bit.)

The sequence F (m) of m-step Fibonacci numbers F
(m)
n is defined as follows:

F (m)
n = F

(m)
n−1 + F

(m)
n−2 + · · ·+ F

(m)
n−m, for n ≥ 1,

and
F

(m)
−m+1 = F

(m)
−m+2 = · · · = F

(m)
−2 = 0, F

(m)
−1 = F

(m)
0 = 1.

Thus, for example, F
(m)
1 = 2 for any m, while for m = 3 we have F

(3)
−2 = 0, F

(3)
−1 =

F
(3)
0 = 1, which implies F

(3)
1 = F

(3)
0 + F

(3)
−1 + F

(3)
−2 = 2, F

(3)
2 = F

(3)
1 + F

(3)
0 + F

(3)
−1 = 4,

and F
(3)
3 = F

(3)
2 + F

(3)
1 + F

(3)
0 = 7.

The generalized Fibonacci numbers can serve as the basis of a numbering system.
Any positive integer N can be represented as the sum of several distinct m-step Fibonacci
numbers and this sum does not contain m consecutive 1’s. Thus, if we represent N in
this number basis, the representation will not have a run of m consecutive 1’s. An
obvious conclusion is that such a run can serve as a comma, to separate consecutive
codewords.

The two generalized Fibonacci codes proposed by Apostolico and Fraenkel are pat-
tern codes (P-codes) and are also universal and complete (a UD code is complete if the
addition of any codeword turns it into a non-UD code). A P-code is a set of codewords
that end with the same pattern P (the pattern is the suffix of the codewords) and where
no codeword includes the pattern anywhere else. For example, if P = 111, then a P-code
is a set of codewords that all end with 111 and none has 111 anywhere else. A P-code
is a prefix code because once a codeword c = x . . . x111 has been selected, no other
codeword will start with c because no other codeword has 111 other than as a suffix.

Given a P-code with the general pattern P = a1a2 . . . ap and an arbitrary codeword
x1x2 . . . xna1a2 . . . ap, we consider the string a2a3 . . . ap|x1x2 . . . xna1a2 . . . ap−1 (the end

2.20 Generalized Fibonacci Codes 117

of P followed by the start of a codeword). If P happens to appear anywhere in this
string, then the code is not synchronous and a transmission error may propagate over
many codewords. On the other hand, if P does not appear anywhere inside such a string,
the code is synchronous and is referred to as an SP-code (it is also comma-free). Such
codes are useful in applications where data integrity is important. When an error occurs
during storage or transmission of an encoded message, the decoder loses synchronization,
but regains it when it sees the next occurrence of P (and it sees it when it reads the
next codeword). As usual, there is a price to pay for this useful property. In general,
SP-codes are not complete.

The authors show that the Elias delta code is asymptotically longer than the gen-
eralized Fibonacci codes (of any order) for small integers, but becomes shorter at a
certain point that depends on the order m of the generalized code. For m = 2, this
transition point is at F

(2)
27 − 1 = 514, 228. For m = 3 it is at (F (3)

63 + F
(3)
631 − 1)/2 =

34, 696, 689, 675, 849, 696 ≈ 3.47×1016, and for m = 4 it is at (F (4)
231+F

(4)
229+F

(4)
228−1)/3 ≈

4.194× 1065.
The first generalized Fibonacci code, C

(m)
1 , employs the pattern 1m. The code is

constructed as follows:

1. The C
(m)
1 code of N = 1 is 1m and the C

(m)
1 code of N = 2 is 01m.

2. All other C
(m)
1 codes have the suffix 01m and a prefix of n−1 bits, where n starts

at 2. For each n, there are F
(m)
n prefixes which are the (n− 1)-bit F (m) representations

of the integers 0, 1, 2,

Table 2.35 lists examples of C
(3)
1 . Once the codes of N = 1 and N = 2 are in place,

we set n = 2 and construct the 1-bit F (3) representations of the integers 0, 1, 2,
There are only two such representations, 0 and 1, and they become the prefixes of the
next two codewords (for N = 3 and N = 4). We increment n to 3, and construct the
2-bit F (3) representations of the integers 0, 1, 2, There are four of them, namely 0,
1, 10, and 11. Each is extended to two bits to form 00, 01, 10, and 11, and they become
the prefixes of N = 5 through N = 8.

Notice that N1 < N2 implies that the C1 code of N1 is lexicographically smaller
than the C1 code of N2 (where a blank space is considered lexicographically smaller than
0). The C1 code is a P-code (with 1m as the pattern) and is therefore a prefix code.
The code is partitioned into groups of m + n codewords each. In each group, the prefix
of the codewords is n − 1 bits long and the suffix is 01m. Each group consists of F

(m)
n−1

codewords of which F
(m)
n−2 codewords start with 0, F

(m)
n−3 start with 10, F

(m)
n−4 start with

110, and so on, up to F
(m)
n−m−1 codewords that start with 1m−10.

A useful, interesting property of this code is that it can be used for arbitrary bit-
strings, not just for integers. The difference is that an integer has a MSB of 1, whereas
a binary string can start with any bit. The idea is to divide the set of bitstrings into
those strings that start with 1 (integers) and those that start with 0. The former strings
are assigned C1 codes that start with 1 (in Table 2.35, those are the codes of 4, 7, 8,
13, 14, 15, . . .). The latter are assigned C1 codes that start with 0 in the following way.
Given a bitstring of the form 0iN (where N is a nonnegative integer), assign to it the
code 0iN01m. Thus, the string 001 is assigned the code 00|1|0111 (which happens to be
the code of 10 in the table).

118 2. Advanced Codes

String C
(3)
1 F (3)

M 7421|0111 1
37421 N

0 0
0 111 1 1

00 0111 10 2
000 0|0111 11 3

1 1|0111 100 4
0000 00|0111 101 5

01 01|0111 110 6
2 10|0111 1000 7
3 11|0111 1001 8

00000 000|0111 1010 9
001 001|0111 1011 10
02 010|0111 1100 11
03 011|0111 1101 12
4 100|0111 10000 13
5 101|0111 10001 14
6 110|0111 10010 15

000000 0000|0111 10011 16

Table 2.35: The Generalized Fibonacci Code C
(3)
1 .

C
(3)
2 C

(2)
2

1
37421|011 1

385321|01 N

11 1 1
1|011 1|01 2

10|011 10|01 3
11|011 100|01 4

100|011 101|01 5
101|011 1000|01 6
110|011 1001|01 7

1000|011 1010|01 8
1001|011 10000|01 9
1010|011 10001|01 10
1011|011 10010|01 11
1100|011 10100|01 12
1101|011 10101|01 13

10000|011 100000|01 14
10001|011 100001|01 15
10010|011 100010|01 16

Table 2.36: Generalized Codes C
(3)
2 C

(2)
2 .

The second generalized Fibonacci code, C
(m)
2 , employs the pattern 1m−1. The code

is constructed as follows:

1. The C
(m)
2 code of N = 1 is 1m−1.

2. All other C
(m)
2 codes have the suffix 01m−1 and prefixes that are the F (m)

representations of the positive integers, in increasing order.

Table 2.36 shows examples of C
(3)
2 and C

(2)
2 . Once the code of N = 1 has been

constructed, we prepare the F (m) representation of n = 1 and prepend it to 01m−1 to
obtain the C2 code of N = 2. We then increment n by 1, and construct the other codes in
the same way. Notice that C2 is not a prefix code because, for example, C

(3)
2 (2) = 1011

is a prefix of C
(3)
2 (11) = 1011011. However, C2 is a UD code because the string 01m−1|1

separates any two codewords (each ends with 01m−1 and starts with 1). The C2 codes
become longer with N and are organized in length groups for n = 0, 1, 2, Each group
has F

(m)
n−1−F

(m)
n−2 codewords of length m+n−1 that can be partitioned as follows: F

(m)
n−3

codewords that start with 10, F
(m)
n−4 codewords that start with 110, and so on, up to

F
(m)
n−m−1 codewords that start with 1m−10.

The authors provide simple procedures for encoding and decoding the two codes.
Once a value for m has been selected, the procedures require tables of many m-step
Fibonacci numbers (if even larger numbers are needed, they have to be computed on
the fly).

A note on robustness. It seems that a P-code is robust. Following an error, the

2.20 Generalized Fibonacci Codes 119

decoder will locate the pattern P very quickly and will resynchronize itself. However, the
term “robust” is imprecise and at least code C

(3)
1 has a weak point, namely the codeword

111. In his short communication [Capocelli 89], Renato Capocelli points out a case where
the decoder of this code can be thrown completely off track because of this codeword.
The example is the message 41n3, which is encoded in C

(3)
1 as 10111|(111)n|00111. If

the second MSB becomes 1 because of an error, the decoder will not sense any error and
will decode this string as (111)n+1|1100111, which is the message 1n+1(15).

2.20.1 A Related Code
The simple code of this section, proposed by Renato Capocelli [Capocelli 89], is prefix,
complete, universal, and also synchronizable (see also Section 3.3 for more synchronous
codes). It is not a generalized Fibonacci code, but it is related to the C1 and C2 codes
of Apostolico and Fraenkel. The code depends on a parameter r and is denoted by
S(r + 1, 01r). Once r has been selected, two-part codewords are constructed with a
suffix 01r and a prefix that is a binary string that does not contain the suffix. Thus, for
example, if r = 2, the suffix is 011 and the prefixes are all the binary strings, starting with
the empty string, that do not contain 011. Table 2.37 lists a few examples of S(3, 011)
(see also Table 2.32) and it is easy to see how the prefixes are the empty string, 0, 1, 00,
01, and so on, but they include no strings with 011. The codeword of N = 9 is 010|011,
but the codeword of N = 10 has the prefix 100 and not 011, so it is 100|011. In general
a codeword x . . . x0101y . . . y|011 will be followed by x . . . x1000y . . . y|011 instead of by
x . . . x0110y . . . y|011. Such codewords have either the form 0β|011 (where β does not
contain two consecutive 1’s) or the form 1γ|011 (where γ does not contain 011). For
example, only 12 of the 16 4-bit prefixes can be used by this code, because the four
prefixes 0011, 0110, 0111, and 1011 contain the pattern 011. In general, the number of
codewords of length N + 3 in S(3, 011) is FN+3 − 1. For N = 4 (codewords of a 4-bit
prefix and a 3-bit suffix), the number of codewords is F4+3 − 1 = F7 − 1 = 12.

N S(3, 011) BS

0 011 0
1 0011 1
2 1011 00
3 00011 01
4 01011 10
5 10011 11
6 11011 000
7 000011 001
8 001011 010
9 010011 011

10 100011 100
11 101011 101
12 110011 110
13 111011 111

Table 2.37: Code S(3, 011) for Integers N and Strings BS.

120 2. Advanced Codes

The table also illustrates how S(3, 011) can be employed to encode arbitrary bit-
strings, not just integers. Simply write all the binary strings in lexicographic order and
assign them the S(3, 011) codewords in increasing order.

The special suffix 01r results in synchronized codewords. If the decoder loses syn-
chronization, it regains it as soon as it recognizes the next suffix. What is perhaps more
interesting is that the C1 and C2 codes of Apostolico and Fraenkel are special cases of
this code. Thus, C

(3)
1 is obtained from S(4, 0111) by replacing all the sequences that

start with 11 with the sequence 11 and moving the rightmost 1 to the left end of the
codeword. Also, C

(2)
2 is obtained from S(3, 011) by replacing all the sequences that start

with 1 with the codeword 1 and moving the rightmost 1 to the left end of the codeword.
The developer provides algorithms for encoding and decoding this code.

Fibonacci couldn’t sleep—
Counted rabbits instead of sheep.

—Katherine O’Brien

2.21 Goldbach Codes

The Fibonacci codes of Section 2.19 have the rare property, termed Zeckendorf’s the-
orem, that they do not have consecutive 1’s. If a binary number of the form 1xx . . . x
does not have any consecutive 1’s, then reversing its bits and appending a 1 results in
a number of the form xx . . . x1|1 that ends with two consecutive 1’s, thereby making it
easy for a decoder to read individual, variable-length Fibonacci codewords from a long
stream of such codes. The variable-length codes described in this section are based on
a similar property that stems from the Goldbach conjecture.

Goldbach’s conjecture: Every even integer n greater than 2 is the sum of two primes.

A prime number is an integer that is not divisible by any other integer (other than
trivially by itself and by 1). The integer 2 is prime, but all other primes are odd. Adding
two odd numbers results in an even number, so mathematicians have always known that
the sum of two primes is even. History had to wait until 1742, when it occurred to
Christian Goldbach, an obscure German mathematician, to ask the “opposite” question.
If the sum of any two primes is even, is it true that every even integer is the sum of two
primes? Goldbach was unable to prove this simple-looking problem, but neither was he
able to find a counter-example. He wrote to the famous mathematician Leonhard Euler
and received the answer “There is little doubt that this result is true.” However, even
Euler was unable to furnish a proof, and at the time of this writing (late 2006), after
more than 260 years of research, the Goldbach conjecture has almost, but not quite,
been proved. It should be noted that many even numbers can be written as the sum of
two primes in several ways. Thus 42 = 23 + 19 = 29 + 13 = 31 + 11 = 37 + 5, 1,000,000
can be partitioned in 5,402 ways, and 100,000,000 has 291,400 Goldbach partitions.
Reference [pass 06] is an online calculator that can compute the Goldbach partitions of
even integers.

2.21 Goldbach Codes 121

Christian Goldbach was a Prussian mathematician. Born in 1690, the
son of a pastor, in Königsberg (East Prussia), Goldbach studied law
and mathematics. He traveled widely throughout Europe and met with
many well-known mathematicians, such as Gottfried Leibniz, Leonhard
Euler, and Nicholas (I) Bernoulli. He went to work at the newly opened
St Petersburg Academy of Sciences and became tutor to the later Tsar
Peter II. The following quotation, from [Mahoney 90] reflects the feelings
of his superiors in Russia “. . . a superb command of Latin style and equal fluency in
German and French. Goldbach’s polished manners and cosmopolitan circle of friends
and acquaintances assured his success in an elite society struggling to emulate its
western neighbors.”
Goldbach is remembered today for Goldbach’s conjecture. He also studied and proved
some theorems on perfect powers. He died in 1764.

In 2001, Peter Fenwick had the idea of using the Goldbach conjecture (assuming that
it is true) to design an entirely new class of codes, based on prime numbers [Fenwick 02].
The prime numbers can serve as the basis of a number system, so if we write an even
integer in this system, its representation will have exactly two 1’s. Thus, the even
number 20 equals 7 + 13 and can therefore be written 10100, where the five bits are
assigned the prime weights (from left to right) 13, 11, 7, 5, and 3. Now reverse this bit
pattern so that its least-significant bit becomes 1, to yield 00101. Such a number is easy
to read and extract from a long bitstring. Simply stop reading at the second 1. Recall
that the unary code (a sequence of zeros terminated by a single 1) is read by a similar
rule: stop at the first 1. Thus, the Goldbach codes can be considered an extension of
the simple unary code.

n 2(n + 3) Primes Codeword

1 8 3 + 5 11
2 10 3 + 7 101
3 12 5 + 7 011
4 14 3 + 11 1001
5 16 5 + 11 0101
6 18 7 + 11 0011
7 18 7 + 13 00101
8 22 5 + 17 010001
9 24 11 + 13 00011
10 26 7 + 19 0010001
11 28 11 + 17 000101
12 30 13 + 17 000011
13 32 13 + 19 0000101
14 34 11 + 23 00010001

Table 2.38: The Goldbach G0 Code.

The first Goldbach code is designated G0. It encodes the positive integer n by
examining the even number 2(n + 3) and writing it as the sum of two primes in reverse
(with its most-significant bit at the right end). The G0 codes listed in Table 2.38 are

122 2. Advanced Codes

based on the primes (from right to left) 23, 19, 17, 13, 11, 7, 5, and 3. It is obvious that
the codes increase in length, but not monotonically, and there is no known expression
for the length of G0(n) as a function of n

Goldbach’s original conjecture (sometimes called the “ternary” Goldbach conjecture),
written in a June 7, 1742 letter to Euler [dartmouth 06], states “at least it seems
that every integer that is greater than 2 is the sum of three primes.” This made
sense because Goldbach considered 1 a prime, a convention that is no longer followed.
Today, his statement would be rephrased to “every integer greater than 5 is the sum
of three primes.” Euler responded with “There is little doubt that this result is true,”
and coined the modern form of the conjecture (a form currently referred to as the
“strong” or “binary” Goldbach conjecture) which states “all positive even integers
greater than 2 can be expressed as the sum of two primes.” Being honest, Euler
also added in his response that he regarded this as a fully certain theorem (“ein ganz
gewisses Theorema”), even though he was unable to prove it.
Reference [utm 06] has information on the history of this and other interesting math-
ematical conjectures.

The G0 codes are efficient for small values of n because (1) they are easy to construct
based on a table of primes, (2) they are easy to decode, and (3) they are about as long as
the Fibonacci codes or the standard binary representation (the β code) of the integers.
However, for large values of n, the G0 codes become too long because, as Table 2.39
illustrates, the primes are denser than the powers of 2 or the Fibonacci numbers. Also,
a large even number can normally be written as the sum of two primes in many different
ways. For large values of n, a large table of primes is therefore needed and it may take
the encoder a while to determine the pair of primes that yields the shortest code for a
given large integer n. (The shortest code is normally produced by two primes of similar
sizes. Writing n = a + b where a is small and b is large, results in a long G0 code. The
best Goldbach partition for 11,230, for example, is 2003 + 9227 and the worst one is
17 + 11213.)

n: 1 2 3 4 5 6 7 8 9 10 11 12
Pn: 1 3 5 7 11 13 17 19 23 29 31 37

2n−1: 1 2 4 8 16 32 64 128 256 512 1024 2048
Fn: 1 1 2 3 5 8 13 21 34 55 89 144

Table 2.39: Growth of Primes, Powers of 2, and Fibonacci Numbers.

Thus, the G0 code of a large integer n is long, and since it has only two 1’s, it must
have many zeros and may have one or two runs of zeros. This property is the basis
for the Goldbach G1 code. The principle of G1 is to determine two primes Pi and Pj

(where i ≤ j) whose sum yields a given integer n, and encode the pair (i, j− i + 1) with
two gamma codes. Thus, for example, n = 100 can be written as the following sums
3 + 97, 11 + 89, 17 + 83, 29 + 71, 41 + 59, and 47 + 53. We select 47 + 53 = P15 + P16,
yielding the pair (15, 16 − 15 + 1 = 2) and the two gamma codes 0001111:010 that
are concatenated to form the G1 code of 100. For comparison, selecting the Goldbach
partition 100 = 3 + 97 yields the indexes 2 and 25, the pair (2, 25− 2 + 1), and the two

2.21 Goldbach Codes 123

gamma codes 010:000011000, two bits longer. Notice that i may equal j, which is why
the pair (i, j − i + 1) and not (i, j − i) is encoded. The latter may result in a second
element of 0.

Table 2.40 lists several G1 codes of even integers. It is again obvious that the lengths
of the G1 codes increase but not monotonically. The lengths of the corresponding gamma
codes are also listed for comparison, and it is clear that the G1 code is the winner in
most cases. Figure 2.41 illustrates the lengths of the G1, Elias gamma code, and the C1

code of Fraenkel and Klein (Section 2.19).

n Sum Indexes Pair Codeword Len. |γ(n)|
2 1+1 1,1 1,1 1:1 2 3
4 1+3 1,2 1,2 1:010 4 5
6 3+3 2,2 2,1 010:1 4 5
8 3+5 2,3 2,2 010:010 6 7
10 3+7 2,4 2,3 010:011 6 7
12 5+7 3,4 3,2 011:010 6 7
14 7+7 4,4 4,1 00100:1 6 7
16 5+11 3,5 3,3 011:011 6 9
18 7+11 4,5 4,2 00100:011 8 9
20 7+13 4,6 4,3 00100:011 8 9
30 13+17 6,7 6,2 00110:010 8 9
40 17+23 7,9 7,3 00111:011 8 11
50 13+37 6,12 6,7 00110:00111 10 11
60 29+31 10,11 10,2 0001010:010 10 11
70 29+41 10,13 10,4 0001010:00100 12 13
80 37+43 12,14 12,3 0001100:011 10 13
90 43+47 14,15 14,2 0001110:010 10 13
100 47+53 15,16 15,2 0001111:010 10 13
40 3+37 2,12 2,11 010:0001011 10 11
40 11+29 5,10 5,6 00101:00110 10 11

Table 2.40: The Goldbach G1 Code.

The last two rows of Table 2.40 list two alternatives for the G1 code of 40, and they
really are two bits longer than the best code of 40. However, selecting the Goldbach
partition with the most similar primes does not always yield the shortest code, as in the
case of 50 = 13+37 = 19+31. Selecting the first pair (where the two primes differ most)
yields the indexes 6, 12 and the pair (6, 7) for a total gamma codes of 10 bits. Selecting
the second pair (the most similar primes), on the other hand, results in indexes 8, 11
and a pair (8, 4) for a total of 12 bits of gamma codes.

In order for it to be useful, the G1 code has to be extended to arbitrary positive
integers, a task that is done in two ways as follows:

1. Map the positive integer n to the even number N = 2(n + 3) and encode N
in G1. This is a natural extension of G1, but it results in indexes that are about 60%
larger and thus generate long codes. For example, the extended code for 20 would be

124 2. Advanced Codes

4 8 16 32 64 128 256 512

2

4

6

8

10

12

14

16

18

20 Codeword length

Gold
ba

ch
 G

1

Elias
 gam

ma

F&K C1

n

Clear[g1, g2, g3];
n=Table[2ˆi, {i,2,9}];
(* ELias gamma *)

Table[{i, IntegerPart[1+2Log[2, n[[i]]]]}, {i,1,8}];
g1=ListPlot[%, PlotJoined->True];
(* Goldbach G2 *)

m[i_]:=4IntegerPart[Log[2, (1.15n[[i]]/2)/Log[E, n[[i]]/2]]];
Table[{i, m[i]}, {i,1,8}];
g2=ListPlot[%, PlotJoined->True, PlotStyle->{Dashing[{0.05, 0.05}]}];
(* Fraenkel Klein Cˆ1 *)

Table[{i, IntegerPart[Log[GoldenRatio, n[[i]] Sqrt[5]]+1]}, {i,1,8}];
g3=ListPlot[%, PlotJoined->True,
PlotStyle->{Dashing[{0.01,0.03,0.02,0.03}]}];

Show[g1, g2, g3, PlotRange->{{0, 8},{0, 20}},
Ticks->{{{1,"4"},{2,"8"},{3,"16"},{4,"32"},

{5,"64"},{6,"128"},{7,"256"},{8,"512"}},
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}},

TextStyle->{FontFamily->"cmr10", FontSize->10}]

Figure 2.41: Codeword Length Versus n for Three Codes.

the original G1 code of 46 = 17 + 29. The indexes are 7, 10, the pair is (7, 4), and the
codes are 00111:00100, two bits longer than the original G1 code of 20.

2. A better way to extend G1 is to consider various cases and handle each differently
so as to obtain the best codes in every case. The developer, Peter Fenwick, refers to the
result as the G2 code. The cases are as follows:

2.1. The integers 1 and 2 are encoded as 110 and 111, respectively (no other codes
will start with 11).

2.2. The even integers are encoded as in G1, but with a small difference. Once it is
determined that n = Pi +Pj , we encode the pair (i+1, j− i+1) instead of (i, j− i+1).
Thus, if i = 1, it is encoded as 010, the gamma code of 2. This guarantees that the G2
code of an even integer will not start with a 1 and will always have the form 0. . . :0. . . .

2.3. If n is the prime Pi, it is encoded as the gamma code of (i + 1) followed by a
single 1 to yield 0. . . :1.

2.4. If n is odd but is not a prime, its G2 code starts with a single 1 followed

2.21 Goldbach Codes 125

by the G2 code of the even number n − 1. The resulting gamma codes have the form
1:0. . . :0. . . .

Table 2.42 lists some examples of the G2 code and compares their lengths to the
lengths of the gamma and omega codes. In most cases, G2 is the shortest of the three,
but in some cases, most notably when n is a power of 2, G2 is longer than the other
codes.

n Codeword Len. |γ(n)| |ω(n)|
1 110 3 1 1
2 111 3 3 3
3 0101 4 3 3
4 010010 6 5 6
5 0111 4 5 6
6 011010 6 5 6
7 001001 6 5 6
8 011011 6 7 7
9 1011011 7 7 7
10 01100100 8 7 7
11 001011 6 7 7
12 00101010 8 7 7
13 001101 6 7 7
14 00110010 8 7 7
15 100110010 9 7 7
16 0010100100 10 9 11
17 001111 6 9 11
18 00111010 8 9 11
19 00010001 8 9 11
20 00111011 8 9 11
30 0001010010 10 9 11
40 0001100011 10 11 12
50 0001111011 10 11 12
60 000010001010 12 11 12
70 000010011011 12 13 13
80 000010110010 12 13 13
90 000011000010 12 13 13
100 000011001011 12 13 13

Table 2.42: The Goldbach G2 Code.

Given an even integer n, there is no known formula to locate any of its Goldbach
partitions. Thus, we cannot determine the precise length of any Goldbach code, but we
can provide an estimate, and the G1 code length is the easiest to estimate. We assume
that the even number 2n is the sum of two primes, each of order n. According to the
prime number theorem, the number π(n) of primes less than n is approximately propor-
tional to n/ lnn. Extensive experiments carried out by Peter Fenwick, the developer of
these codes, indicate that for values up to 1000, a good constant of proportionality is

126 2. Advanced Codes

1.15. Thus, we estimate index i at i ≈ 1.15n/ lnn, resulting in a gamma code of

2
⌊
log2

1.15n

lnn

⌋
+ 1 def= 2L + 1 bits. (2.10)

We estimate the second element of the pair (i, j− i+1) at i/2 (Table 2.40 shows that it
is normally smaller), which implies that the second gamma code is two bits shorter than
the first. The total length of the G1 code is therefore (2L + 1) + (2L− 1) = 4L, where
L is given by Equation (2.10). Direct computations show that the G1 code is generally
shorter than the gamma code for values up to 100 and longer for larger values.

The length of the G2 code is more difficult to estimate, but a simple experiment
that computed these codes for n values from 2 to 512 indicates that their lengths (which
often vary by 2–3 bits from code to code) can be approximated by the smooth function
2 + 13

8 log2 n. For n = 512, this expression has the value 16.625, which is 1.66 times the
length of the binary representation of 512 (10 bits). This should be contrasted with the
gamma code, where the corresponding factor is 2.

I can envision an abstract of a paper, circa 2100, that reads: “We can show, in a
certain precise sense, that the Goldbach conjecture is true with probability larger than
0.99999, and that its complete truth could be determined with a budget of $10B.”)

—Doron Zeilberger (1993)

2.22 Additive Codes

The fact that the Fibonacci numbers and the Goldbach conjecture lead to simple, effi-
cient codes suggests that other number sequences may be employed in the same way to
create similar, and perhaps even better, codes. Specifically, we may extend the Goldbach
codes if we find a sequence S of “basis” integers such that any integer n can be expressed
as the sum of two elements of S (it is possible to search for similar sequences that can
express any n as the sum of three, four, or more elements, but we restrict our search to
sums of two sequence elements). Given such a sequence, we can conceive a code similar
to G0, but for all the nonnegative integers, not just the even integers. Given several
such sequences, we can call the resulting codes “additive codes.”

One technique to generate a sequence of basis integers is based on the sieve principle
(compare with the sieve of Eratosthenes). We start with a short sequence (a basis set)
whose elements ai are sufficient to represent each of the first few positive integers as a
sum ai + aj . This initial sequence is then enlarged in steps. In a general step, we have
just added a new element ak and ended up with the sequence S = (0, a1, a2, . . . , ak) such
that each integer 1 ≤ n ≤ ak can be represented as a sum of two elements of S. We
now generate all the sums ai + ak for i values from 1 to k and check to verify that they
include ak + 1, ak + 2, and so on. When we find the first missing integer, we append it
to S as element ak+1. We now know that each integer 1 ≤ n ≤ ak+1 can be represented
as a sum of two elements from S, and we can continue to extend sequence S of basis
integers.

2.22 Additive Codes 127

This sieve technique is illustrated with the basis set (0, 1, 2). Any of 0, 1, and 2 can
be represented as the sum of two elements from this set. We generate all the possible
sums ai + ak = ai + 2 and obtain 3 and 4. Thus, 5 is the next integer that cannot be
generated, and it becomes the next element of the set. Adding ai + 5 yields 5, 6, and 7,
so the next element is 8. Adding ai + 8 in the sequence (0, 1, 2, 5, 8) yields 8, 9, 10, 13,
and 16, so the next element should be 11. Adding ai +11 in the sequence (0, 1, 2, 5, 8, 11)
yields 11, 12, 13, 16, 19, and 22, so the next element should be 14. Continuing in this
way, we obtain the sequence 0, 1, 2, 5, 8, 11, 14, 16, 20, 23, 26, 29, 33, 46, 50, 63, 67,
80, 84, 97, 101, 114, 118, 131, 135, 148, 152, 165, 169, 182, 186, 199, 203, 216, 220, 233,
and 237 whose 37 elements can represent every integer from 0 to 250 as the sum of two
elements. The equivalent Goldbach code for integers up to 250 requires 53 primes, so it
has the potential of being longer.

The initial basis set may be as small as (0, 1), but may also contain other integers
(seeds). In fact, the seeds determine the content and performance of the additive se-
quence. Starting with just the smallest basic set (0, 1), adding ai + 1 yields 1 and 2,
so the next element should be 3. Adding ai + 3 in the sequence (0, 1, 3) yields 3, 4,
and 6, so the next element should be 5. Adding ai + 5 in the sequence (0, 1, 3, 5) yields
5, 6, 8, and 10, so the next element should be 7. We end up with a sequence of only
odd numbers, which is why it may be a good idea to start with the basic sequence plus
some even seeds. Table 2.43 lists some additive codes based on the additive sequence
(0, 1, 3, 5, 7, 9, 11, 12, 25, 27, 29, 31, 33, 35, . . .) and compares their lengths to the lengths
of the corresponding gamma codes.

n Sum Indexes Pair Codeword Len. |γ(n)|
10 3 + 7 3,5 3,3 011:011 6 7
11 0 + 11 1,7 1,7 1:00111 6 7
12 1 + 11 2,7 2,6 010:00110 8 7
13 1 + 12 2,8 2,7 010:00111 8 7
14 7 + 7 5,5 5,1 00101:1 6 7
15 3 + 12 3,8 3,6 011:00110 8 7
16 7 + 9 5,6 5,2 00101:010 8 9
17 5 + 12 4,8 4,5 00100:00101 10 9
18 7 + 11 5,7 5,3 00101:011 8 9
20 9 + 11 6,7 6,2 00110:010 8 9
30 5 + 25 4,9 4,6 00100:00110 10 9
40 11 + 29 7,11 7,5 00111:00101 10 11
50 25 + 25 9,9 9,1 0001001:1 8 11
60 29 + 31 11,12 11,2 0001011:010 10 11
70 35 + 35 14,14 14,1 0001110:1 8 13
80 0 + 80 1,20 1,20 1:000010100 10 13
90 29 + 61 11,17 11,7 0001011:00111 14 13
100 3 + 97 3,23 3,21 011:000010101 14 13

Table 2.43: An Additive Code.

The developer of these codes presents a summary where the gamma, delta,

128 2. Advanced Codes

Fibonacci, G1, and additive codes are compared for integers n from 1 to 256, and
concludes that for values from 4 to 30, the additive code is the best of the five, and for
the entire range, it is better than the gamma and delta codes.

Given integer data in a certain interval, it seems that the best additive codes to
compress the data are those generated by the shortest additive sequence. Determining
this sequence can be done by a brute force approach that tries many sets of seeds and
computes the additive sequence generated by each set.

Stanislaw Marcin Ulam (1909–1984)

One of the most prolific mathematicians of the 20th century,
Stanislaw Ulam also had interests in astronomy and physics. He
worked on the hydrogen bomb at the Los Alamos National Labora-
tory, proposed the Orion project for nuclear propulsion of space ve-
hicles, and originated the Monte-Carlo method (and also coined this
term). In addition to his important original work, mostly in point
set topology, Ulam was also interested in mathematical recreations,
games, and oddities. The following quotation, by his friend and col-
league Gian-Carlo Rota, summarizes Ulam’s unusual personality and
talents.

“Ulam’s mind is a repository of thousands of stories, tales, jokes, epigrams, remarks,
puzzles, tongue-twisters, footnotes, conclusions, slogans, formulas, diagrams, quotations,
limericks, summaries, quips, epitaphs, and headlines. In the course of a normal conver-
sation he simply pulls out of his mind the fifty-odd relevant items, and presents them
in linear succession. A second-order memory prevents him from repeating himself too
often before the same public.”

There is another Ulam sequence that is constructed by a simple rule. Start with
any positive integer n and construct a sequence as follows:

1. If n = 1, stop.
2. If n is even, the next number is n/2; go to step 1.
3. If n is odd, the next number is 3n + 1; go to step 1.

Here are some examples for the first few integers: (1), (10, 5, 16, 8, 4, 2, 1), (2, 1),
(16, 8, 4, 2, 1), (3, 10, 5, . . .) (22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, . . .).

These sequences are sometimes known as the 3x + 1 problem, because no one has
proved that they always reach the value 1. However, direct checking up to 100 × 250

suggests that this may be so.

Ulam Sequence. The Ulam sequence (u, v) is defined by a1 = u, a2 = v, and ai

for i > 2 is the smallest integer that can be expressed uniquely as the sum of two distinct
earlier elements. The numbers generated this way are sometimes called u-numbers or
Ulam numbers. A basic reference is [Ulam 06].

The first few elements of the (1, 2)-Ulam sequence are 1, 2, 3, 4, 6, 8, 11, 13, 16,. . . .
The element following the initial (1, 2) is 3, because 3 = 1 + 2. The next element is
4 = 1 + 3. (There is no need to worry about 4 = 2 + 2, because this is a sum of two

2.23 Golomb Code 129

identical elements instead of two distinct elements.) The integer 5 is not an element of
the sequence because it is not uniquely representable, but 6 = 2 + 4 is.

These simple rules make it possible to generate Ulam sequences for any pair (u, v)
of integers. Table 2.44 lists several examples (the “Sloane” labels in the second column
refer to integer sequences from [Sloane 06]).

(u, v) Sloane Sequence

(1, 2) A002858 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, . . .
(1, 3) A002859 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, . . .
(1, 4) A003666 1, 4, 5, 6, 7, 8, 10, 16, 18, 19, . . .
(1, 5) A003667 1, 5, 6, 7, 8, 9, 10, 12, 20, 22, . . .
(2, 3) A001857 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, . . .
(2, 4) A048951 2, 4, 6, 8, 12, 16, 22, 26, 32, 36, . . .
(2, 5) A007300 2, 5, 7, 9, 11, 12, 13, 15, 19, 23, . . .

Table 2.44: Some Ulam Sequences.

It is clear that Ulam sequences are additive and can be used to generate additive
codes. The following Mathematica code to generate such a sequence is from [Sloane 06],
sequence A002858.

Ulam4Compiled = Compile[{{nmax, _Integer}, {init, _Integer, 1}, {s, _Integer}},
Module[{ulamhash = Table[0, {nmax}], ulam = init},
ulamhash[[ulam]] = 1;
Do[If[Quotient[Plus @@ ulamhash[[i - ulam]], 2] == s, AppendTo[ulam, i];
ulamhash[[i]] = 1], {i, Last[init] + 1, nmax}]; ulam]];
Ulam4Compiled[355, {1, 2}, 1]

2.23 Golomb Code

The seventeenth-century French mathematician Blaise Pascal is known today mostly for
his contributions to the field of probability, but during his short life he made important
contributions to many areas. It is generally agreed today that he invented (an early
version of) the game of roulette (although some believe that this game originated in
China and was brought to Europe by Dominican monks who were
trading with the Chinese). The modern version of roulette appeared
in 1842.

The roulette wheel has 37 shallow depressions (known as slots)
numbered 0 through 36 (the American version has 38 slots numbered
00, 0, and 1 through 36). The dealer (croupier) spins the wheel while
sending a small ball rolling in the opposite direction inside the wheel.
Players can place bets during the spin until the dealer says “no more
bets.” When the wheel stops, the slot where the ball landed deter-
mines the outcome of the game. Players who bet on the winning number are paid
according to the type of bet they placed, while players who bet on the other numbers

130 2. Advanced Codes

lose their entire bets to the house. [Bass 92] is an entertaining account of an attempt to
compute the result of a roulette spin in real time.

The simplest type of bet is on a single number. A player winning this bet is paid
35 times the amount bet. Thus, a player who plays the game repeatedly and bets $1
each time expects to lose 36 games and win one game out of every set of 37 games on
average. The player therefore loses on average $37 for every $35 won.

The probability of winning a game is p = 1/37 ≈ 0.027027 and that of losing a game
is the much higher q = 1−p = 36/37 ≈ 0.972973. The probability P (n) of winning once
and losing n− 1 times in a sequence of n games is the product qn−1p. This probability
is normalized because

∞∑

n=1

P (n) =
∞∑

n=1

qn−1p = p

∞∑

n=0

qn =
p

1− q
=

p

p
= 1.

As n grows, P (n) shrinks slowly because of the much higher value of q. The values of
P (n) for n = 1, 2, . . . , 10 are 0.027027, 0.026297, 0.025586, 0.024895, 0.024222, 0.023567,
0.022930, 0.022310, 0.021707, and 0.021120.

The probability function P (n) is said to obey a geometric distribution. The rea-
son for the name “geometric” is the resemblance of this distribution to the geometric
sequence. A sequence where the ratio between consecutive elements is a constant q is
called geometric. Such a sequence has elements a, aq, aq2, aq3, The (infinite) sum
of these elements is a geometric series

∑∞
i=0 aqi. The interesting case is where q satisfies

−1 < q < 1, in which the series converges to a/(1− q). Figure 2.45 shows the geometric
distribution for p = 0.2, 0.5, and 0.8.

2 4 6 8 10

0.2

p=0.2

0.4

0.6

p=0.5

0.8

p=0.8

Figure 2.45: Geometric Distributions for p = 0.2, 0.5, and 0.8.

Certain data compression methods are based on run-length encoding (RLE). Imag-
ine a binary string where a 0 appears with probability p and a 1 appears with probability
1−p. If p is large, there will be runs of zeros, suggesting the use of RLE to compress the
string. The probability of a run of n zeros is pn, and the probability of a run of n zeros
followed by a 1 is pn(1− p), indicating that run lengths are distributed geometrically. A

2.23 Golomb Code 131

naive approach to compressing such a string is to compute the probability of each run
length and apply the Huffman method to obtain the best prefix codes for the run lengths.
In practice, however, there may be a large number of run lengths and this number may
not be known in advance. A better approach is to construct an infinite family of optimal
prefix codes, such that no matter how long a run is, there will be a code in the family to
encode it. The codes in the family must depend on the probability p, so we are looking
for an infinite family of parametrized prefix codes. The Golomb codes presented here
[Golomb 66] are such codes and they are the best ones for the compression of data items
that are distributed geometrically.

Let’s first examine a few numbers to see why such codes must depend on p. For
p = 0.99, the probabilities of runs of two zeros and of 10 zeros are 0.992 = 0.9801
and 0.9910 = 0.9, respectively (both large). In contrast, for p = 0.6, the same run
lengths have the much smaller probabilities of 0.36 and 0.006. The ratio 0.9801/0.36 is
2.7225, but the ratio 0.9/0.006 is the much greater 150. Thus, a large p implies higher
probabilities for long runs, whereas a small p implies that long runs will be rare.

Two relevant statistical concepts are the mean and median of a sequence of run
lengths. They are illustrated by the binary string

00000100110001010000001110100010000010001001000110100001001 (2.11)

that has the 18 run lengths 5, 2, 0, 3, 1, 6, 0, 0, 1, 3, 5, 3, 2, 3, 0, 1, 4, and 2. Its mean is
the average (5+2+0+3+1+6+0+0+1+3+5+3+2+3+0+1+4+2)/18 ≈ 2.28.
Its median m is the value such that about half the run lengths are shorter than m and
about half are equal to or greater than m. To find m, we sort the 18 run lengths to
obtain 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, and 6 and find that the median (the
central number) is 2.

We are now ready for a description of the Golomb code. The main feature of
this code is its coding efficiency when the data consists of two asymmetric events, one
common and the other one rare, that are interleaved.

Encoding. The Golomb code for nonnegative integers n depends on the choice of
a parameter m (we’ll see later that for RLE, m should depend on the probability p and
on the median of the run lengths). Thus, it is a parametrized prefix code, which makes
it especially useful in cases where good values for the parameter can be computed or
estimated. The first step in constructing the Golomb code of the nonnegative integer n
is to compute the three quantities q (quotient), r (remainder), and c by

q =
⌊ n

m

⌋
, r = n− qm, and c = �log2 m�,

following which the code is constructed in two parts; the first is the value of q, coded in
unary, and the second is the binary value of r coded in a special way. The first 2c −m
values of r are coded, as unsigned integers, in c − 1 bits each, and the rest are coded
in c bits each (ending with the biggest c-bit number, which consists of c 1’s). The case
where m is a power of 2 (m = 2c) is special because it requires no (c− 1)-bit codes. We
know that n = r + qm; so once a Golomb code is decoded, the values of q and r can be
used to easily reconstruct n. The case m = 1 is also special. In this case, q = n and
r = c = 0, implying that the Golomb code of n is its unary code.

132 2. Advanced Codes

Examples. Choosing m = 3 produces c = 2 and the three remainders 0, 1, and 2.
We compute 22 − 3 = 1, so the first remainder is coded in c − 1 = 1 bit to become 0,
and the remaining two are coded in two bits each ending with 112, to become 10 and 11.
Selecting m = 5 results in c = 3 and produces the five remainders 0 through 4. The first
three (23−5 = 3) are coded in c−1 = 2 bits each, and the remaining two are each coded
in three bits ending with 1112. Thus, 00, 01, 10, 110, and 111. The following simple
rule shows how to encode the c-bit numbers such that the last of them will consist of c
1’s. Denote the largest of the (c− 1)-bit numbers by b, then construct the integer b + 1
in c− 1 bits, and append a zero on the right. The result is the first of the c-bit numbers
and the remaining ones are obtained by incrementing.

Table 2.46 shows some examples of m, c, and 2c−m, as well as some Golomb codes
for m = 2 through 13.

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

2c −m 0 1 0 3 2 1 0 7 6 5 4 3 2 1 0
m/n 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0|0 0|1 10|0 10|1 110|0 110|1 1110|0 1110|1 11110|0 11110|1 111110|0 111110|1 1111110|0
3 0|0 0|10 0|11 10|0 10|10 10|11 110|0 110|10 110|11 1110|0 1110|10 1110|11 11110|0
4 0|00 0|01 0|10 0|11 10|00 10|01 10|10 10|11 110|00 110|01 110|10 110|11 11110|00
5 0|00 0|01 0|10 0|110 0|111 10|00 10|01 10|10 10|110 10|111 110|00 110|01 110|10
6 0|00 0|01 0|100 0|101 0|110 0|111 10|00 10|01 10|100 10|101 10|110 10|111 110|00
7 0|00 0|010 0|011 0|100 0|101 0|110 0|111 10|00 10|010 10|011 10|100 10|101 10|110
8 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|111 10|000 10|001 10|010 10|011 10|100
9 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|1110 0|1111 10|000 10|001 10|010 10|011
10 0|000 0|001 0|010 0|011 0|100 0|101 0|1100 0|1101 0|1110 0|1111 10|000 10|001 10|010
11 0|000 0|001 0|010 0|011 0|100 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000 10|001
12 0|000 0|001 0|010 0|011 0|1000 0|1001 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000
13 0|000 0|001 0|010 0|0110 0|0111 0|1000 0|1001 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111

Table 2.46: Some Golomb Codes for m = 2 Through 13.

For a somewhat longer example, we select m = 14. This results in c = 4 and
produces the 14 remainders 0 through 13. The first two (24 − 14 = 2) are coded in
c − 1 = 3 bits each, and the remaining 12 are coded in four bits each, ending with
11112 (and as a result starting with 01002). Thus, we have 000, 001, followed by the 12
values 0100, 0101, 0110, 0111, . . . , 1111. Table 2.47 lists several detailed examples and
Table 2.48 lists 48 codes for m = 14 and for m = 16. The former starts with two 4-bit
codes, followed by sets of 14 codes each that are getting longer by one bit. The latter
is simpler because 16 is a power of 2. The Golomb codes for m = 16 consist of sets of
16 codes each that get longer by one bit. The Golomb codes for the case where m is a
power of 2 have been conceived by Robert F. Rice and are called Rice codes. They are
employed by several algorithms for lossless audio compression.

Tables 2.47 and 2.48 illustrate the effect of m on the code length. For small values
of m, the Golomb codes start short and rapidly increase in length. They are appropriate
for RLE in cases where the probability p of a 0 bit is small, implying very few long
runs. For large values of m, the initial codes (for n = 1, 2, . . .) are long, but their lengths
increase slowly. Such codes make sense for RLE when p is large, implying that many
long runs are expected.

2.23 Golomb Code 133

n 0 1 2 3 . . . 13 14 15 16 17 . . . 27 28 29 30
q = � n

14� 0 0 0 0 . . . 0 1 1 1 1 . . . 1 2 2 2
unary(q) 0 0 0 0 . . . 0 10 10 10 10 . . . 10 110 110 110
r 000 001 0100 0101 . . . 1111 000 001 0100 0101 . . . 1111 000 001 0100

Table 2.47: Some Golomb Codes for m = 14.

m = 14 m = 16

n Code n Code n Code n Code
0 0000 24 101100 0 00000 24 101000
1 0001 25 101101 1 00001 25 101001

26 101110 2 00010 26 101010
2 00100 27 101111 3 00011 27 101011
3 00101 28 110000 4 00100 28 101100
4 00110 29 110001 5 00101 29 101101
5 00111 6 00110 30 101110
6 01000 30 1100100 7 00111 31 101111
7 01001 31 1100101 8 01000
8 01010 32 1100110 9 01001 32 1100000
9 01011 33 1100111 10 01010 33 1100001

10 01100 34 1101000 11 01011 34 1100010
11 01101 35 1101001 12 01100 35 1100011
12 01110 36 1101010 13 01101 36 1100100
13 01111 37 1101011 14 01110 37 1100101
14 10000 38 1101100 15 01111 38 1100110
15 10001 39 1101101 39 1100111

40 1101110 16 100000 40 1101000
16 100100 41 1101111 17 100001 41 1101001
17 100101 42 1110000 18 100010 42 1101010
18 100110 43 1110001 19 100011 43 1101011
19 100111 20 100100 44 1101100
20 101000 44 11100100 21 100101 45 1101101
21 101001 45 11100101 22 100110 46 1101110
22 101010 46 11100110 23 100111 47 1101111
23 101011 47 11100111

Table 2.48: The First 48 Golomb Codes for m = 14 and m = 16.

Decoding. The Golomb codes are designed in this special way to facilitate their
decoding. We first demonstrate the decoding for the simple case m = 16 (m is a power of
2). To decode, start at the left end of the code and count the number A of 1’s preceding
the first 0. The length of the code is A + c + 1 bits (for m = 16, this is A + 5 bits).
If we denote the rightmost five bits of the code by R, then the value of the code is
16A + R. This simple decoding reflects the way the code was constructed. To encode n
with m = 16, start by dividing it by 16 to get n = 16A + R, then write A 1’s followed
by a single 0, followed by the 4-bit representation of R.

For m values that are not powers of 2, decoding is slightly more involved. Assuming
again that a code begins with A 1’s, start by removing them and the zero immediately
following them. Denote the c − 1 bits that follow by R. If R < 2c −m, then the total
length of the code is A + 1 + (c− 1) (the A 1’s, the zero following them, and the c− 1
bits that follow) and its value is m×A + R. If R ≥ 2c −m, then the total length of the
code is A + 1 + c and its value is m×A + R′ − (2c −m), where R′ is the c-bit integer
consisting of R and the bit that follows R.

134 2. Advanced Codes

An example is the code 0001xxx, for m = 14. There are no leading 1’s, so A is
0. After removing the leading zero, the c − 1 = 3 bits that follow are R = 001. Since
R < 2c −m = 2, we conclude that the length of the code is 0 + 1 + (4 − 1) = 4 and
its value is 001. Similarly, the code 00100xxx for the same m = 14 has A = 0 and
R = 0102 = 2. In this case, R ≥ 2c −m = 2, so the length of the code is 0 + 1 + c = 5,
the value of R′ is 01002 = 4, and the value of the code is 14× 0 + 4− 2 = 2.

The JPEG-LS method for lossless image compression (recommendation ISO/IEC
CD 14495) employs the Golomb code.

The family of Golomb codes has a close relative, the exponential Golomb codes
which are described on page 164.

It is now clear that the best value for m depends on p, and it can be shown that
this value is the integer closest to −1/ log2 p or, equivalently, the value that satisfies

pm ≈ 1/2. (2.12)

It can also be shown that in the case of a sequence of run lengths, this integer is the
median of the run lengths. Thus, for p = 0.5, m should be −1/ log2 0.5 = 1. For p = 0.7,
m should be 2, because −1/ log2 0.7 ≈ 1.94, and for p = 36/37, m should be 25, because
−1/ log2(36/37) ≈ 25.29.

It should also be mentioned that Gallager and van Voorhis [Gallager and van
Voorhis 75] have refined and extended Equation (2.12) into the more precise relation

pm + pm+1 ≤ 1 < pm + pm−1. (2.13)

They proved that the Golomb code is the best prefix code when m is selected by their
inequality. We first show that for a given p, inequality (2.13) has only one solution m.
We manipulate this inequality in four steps as follows:

pm(1 + p) ≤ 1 < pm−1(1 + p),

pm ≤ 1
(1 + p)

< pm−1,

m ≥ 1
log p

log
1

1 + p
> m− 1,

m ≥ − log(1 + p)
log p

> m− 1,

from which it is clear that the unique value of m is

m =
⌈
− log2(1 + p)

log2 p

⌉
. (2.14)

Three examples are presented here to illustrate the performance of the Golomb code
in compressing run lengths. The first example is the binary string (2.11), which has 41
zeros and 18 ones. The probability of a zero is therefore 41/(41 + 18) ≈ 0.7, yielding
m = �− log 1.7/ log 0.7� = �1.487� = 2. The sequence of run lengths 5, 2, 0, 3, 1, 6, 0, 0,

2.23 Golomb Code 135

1, 3, 5, 3, 2, 3, 0, 1, 4, and 2 can therefore be encoded with the Golomb codes for m = 2
into the string of 18 codes

1101|100|00|101|01|11100|00|00|01|101|1101|101|100|101|00|01|1100|100.

The result is a 52-bit string that compresses the original 59 bits. There is almost no
compression because p isn’t large. Notice that string (2.11) has three short runs of 1’s,
which can be interpreted as four empty runs of zeros. It also has three runs (of zeros)
of length 1. The next example is the 94-bit string

00000000001000000000100000001000000000001000000001000000000000100000000100000001000000000010000000,

which is sparser and therefore compresses better. It consists of 85 zeros and 9 ones, so
p = 85/(85 + 9) = 0.9. The best value of m is therefore m = �− log(1.9)/ log(0.9)� =
�6.09� = 7. The 10 runs of zeros have lengths 10, 9, 7, 11, 8, 12, 8, 7, 10, and 7. When
encoded by the Golomb codes for m = 7, the run lengths become the 47-bit string

10100|10011|1000|10101|10010|10110|10010|1000|10100|1000,

resulting in a compression factor of 94/47 = 2.
The third, extreme, example is a really sparse binary string that consists of, say, 106

bits, of which only 100 are ones. The probability of zero is p = 106/(106 +102) = 0.9999,
implying m = 6932. There are 101 runs, each about 104 zeros long. The Golomb code
of 104 for m = 6932 is 14 bits long, so the 101 runs can be compressed to 1414 bits,
yielding the impressive compression factor of 707!

In summary, given a binary string, we can employ the method of run-length encoding
to compress it with Golomb codes in the following steps: (1) count the number of zeros
and ones, (2) compute the probability p of a zero, (3) use Equation (2.14) to compute
m, (4) construct the family of Golomb codes for m, and (5) for each run-length of n
zeros, write the Golomb code of n on the compressed stream.

In order for the run lengths to be meaningful, p should be large. Small values of
p, such as 0.1, result in a string with more 1’s than zeros and thus in many short runs
of zeros and long runs of 1’s. In such a case, it is possible to use RLE to compress the
runs of 1’s. In general, we can talk about a binary string whose elements are r and s
(for run and stop). For r, we should select the more common element, but it has to be
very common (the distribution of r and s should be skewed) for RLE to produce good
compression. Values of p around 0.5 result in runs of both zeros and 1’s, so regardless
of which bit is selected for the r element, there will be many runs of length zero. For
example, the string 00011100110000111101000111 has the following run lengths of zeros
3, 0, 0, 2, 0, 4, 0, 0, 0, 1, 3, 0, 0 and similar run lengths of 1’s 0, 0, 3, 0, 2, 0, 0, 0, 4,
1, 0, 0, 3. In such a case, RLE is not a good choice for compression and other methods
should be considered.

Another approach to adaptive RLE is to use the binary string input so far to
estimate p and from it to estimate m, and then use the new value of m to encode the
next run length (not the current one because the decoder cannot mimic this). Imag-
ine that three runs of 10, 15, and 21 zeros have been input so far, and the first two
have already been compressed. The current run of 21 zeros is first compressed with the
current value of m, then a new p is computed as (10 + 15 + 21)/[(10 + 15 + 21) + 3]

136 2. Advanced Codes

and is used to update m either from −1/ log2 p or from Equation (2.14). (The 3 is the
number of 1’s input so far, one for each run.) The new m is used to compress the next
run. The algorithm accumulates the lengths of the runs in variable L and the number of
runs in N . Figure 2.49 is a simple pseudocode listing of this method. (A practical imple-
mentation should halve the values of L and N from time to time, to prevent them from
overflowing.)

L = 0; % initialize
N = 0;
m = 1; % or ask user for m
% main loop
for each run of r zeros do
construct Golomb code for r using current m.
write it on compressed stream.
L = L + r: % update L, N, and m
N = N + 1;
p = L/(L + N);
m = �−1/ log2 p + 0.5�;

endfor;

Figure 2.49: Simple Adaptive Golomb RLE Encoding.

In addition to the codes, Solomon W. Golomb has his “own” Golomb constant:
0.624329988543550870992936383100837244179642620180529286.

2.24 Rice Codes

The Golomb codes constitute a family that depends on the choice of a parameter m.
The case where m is a power of 2 (m = 2k) is special and results in a Rice code
(sometimes also referred to as Golomb–Rice code), so named after its originator, Robert
F. Rice ([Rice 79], [Rice 91], and [Fenwick 96]). The Rice codes are also related to
the subexponential code of Section 2.25. A Rice code depends on the choice of a base
k and is computed in the following steps: (1) Separate the sign bit from the rest of
the number. This is optional and the bit becomes the most-significant bit of the Rice
code. (2) Separate the k LSBs. They become the LSBs of the Rice code. (3) Code
the remaining j = �n/2k� bits as either j zeros followed by a 1 or j 1’s followed by a
0 (similar to the unary code). This becomes the middle part of the Rice code. Thus,
this code is computed with a few logical operations, which is faster than computing a
Huffman code, a process that requires sliding down the Huffman tree while collecting
the individual bits of the code. This feature is especially important for the decoder,
which has to be simple and fast. Table 2.50 shows examples of this code for k = 2,
which corresponds to m = 4 (the column labeled “No. of ones” lists the number of 1’s
in the middle part of the code). Notice that the codes of this table are identical (except

2.24 Rice Codes 137

No. of
i Binary Sign LSB ones Code i Code

0 0 0 00 0 0|0|00
1 1 0 01 0 0|0|01 −1 1|0|01
2 10 0 10 0 0|0|10 −2 1|0|10
3 11 0 11 0 0|0|11 −3 1|0|11
4 100 0 00 1 0|10|00 −4 1|10|00
5 101 0 01 1 0|10|01 −5 1|10|01
6 110 0 10 1 0|10|10 −6 1|10|10
7 111 0 11 1 0|10|11 −7 1|10|11
8 1000 0 00 2 0|110|00 −8 1|110|00

11 1011 0 11 2 0|110|11 −11 1|110|11
12 1100 0 00 3 0|1110|00 −12 1|1110|00
15 1111 0 11 3 0|1110|11 −15 1|1110|11

Table 2.50: Various Positive and Negative Rice Codes.

for the extra, optional, sign bit) to the codes on the 3rd row (the row for m = 4) of
Table 2.46.

The length of the (unsigned) Rice code of the integer n with parameter k is 1+ k +
�n/2k� bits, indicating that these codes are suitable for data where the integer n appears
with a probability P (n) that satisfies log2 P (n) = −(1 + k + n/2k) or P (n) ∝ 2−n, an
exponential distribution, such as the Laplace distribution. (See [Kiely 04] for a detailed
analysis of the optimal values of the Rice parameter.) The Rice code is instantaneous,
once the decoder reads the sign bit and skips to the first 0 from the left, it knows how
to generate the left and middle parts of the code. The next k bits should be read and
appended to that.

Rice codes are ideal for data items with a Laplace distribution, but other prefix codes
exist that are easier to construct and to decode and that may, in certain circumstances,
outperform the Rice codes. Table 2.51 lists three such codes. The “pod” code, due
to Robin Whittle [firstpr 06], codes the number 0 with the single bit 1, and codes the
binary number 1 b...b︸︷︷︸

k

as 0...0︸︷︷︸
k+1

1 b...b︸︷︷︸
k

. In two cases, the pod code is one bit longer than

the Rice code, in four cases it has the same length, and in all other cases it is shorter
than the Rice codes. The Elias gamma code [Fenwick 96] is identical to the pod code
minus its leftmost zero. It is therefore shorter, but does not provide a code for zero (see
also Table 2.8). The biased Elias gamma code corrects this fault in an obvious way, but
at the cost of making some codes one bit longer.

There remains the question of what base value n to select for the Rice codes. The
base determines how many low-order bits of a data symbol are included directly in the
Rice code, and this is linearly related to the variance of the data symbol. Tony Robinson,
the developer of the Shorten method for audio compression [Robinson 94], provides the
formula n = log2[log(2)E(|x|)], where E(|x|) is the expected value of the data symbols.
This value is the sum

∑ |x|p(x) taken over all possible symbols x.
Figure 2.52 lists the lengths of various Rice codes and compares them to the length

of the standard binary (beta) code.

138 2. Advanced Codes

Number Pod Elias Biased Elias
Dec Binary gamma gamma

0 00000 1 1
1 00001 01 1 010
2 00010 0010 010 011
3 00011 0011 011 00100
4 00100 000100 00100 00101
5 00101 000101 00101 00110
6 00110 000110 00110 00111
7 00111 000111 00111 0001000
8 01000 00001000 0001000 0001001
9 01001 00001001 0001001 0001010

10 01010 00001010 0001010 0001011
11 01011 00001011 0001011 0001100
12 01100 00001100 0001100 0001101
13 01101 00001101 0001101 0001110
14 01110 00001110 0001110 0001111
15 01111 00001111 0001111 000010000
16 10000 0000010000 000010000 000010001
17 10001 0000010001 000010001 000010010
18 10010 0000010010 000010010 000010011

Table 2.51: Pod, Elias Gamma, and Biased Elias Gamma Codes.

2.25 Subexponential Code
The subexponential code of this section is related to the Rice codes. Like the Golomb
codes and the Rice codes, the subexponential code depends on a parameter k ≥ 0. The
main feature of the subexponential code is its length. For integers n < 2k+1, the code
length increases linearly with n, but for larger values of n, it increases logarithmically.
The subexponential code of the nonnegative integer n is computed in two steps. In the
first step, values b and u are calculated by

b =
{

k, if n < 2k,
�log2 n�, if n ≥ 2k,

and u =
{

0, if n < 2k,
b− k + 1, if n ≥ 2k.

In the second step, the unary code of u (in u+1 bits) is followed by the b least-significant
bits of n to become the subexponential code of n. Thus, the total length of the code is

u + 1 + b =
{

k + 1, if n < 2k,
2�log2 n� − k + 2, if n ≥ 2k.

Table 2.53 lists examples of the subexponential code for various values of n and k. It
can be shown that for a given n, the code lengths for consecutive values of k differ by
at most 1.

Subexponential codes are used in the progressive FELICS method for image com-
pression [Howard and Vitter 94].

2.26 Codes Ending with “1” 139

10 100 1000 10000 10

20

40

60

80

100

120

5 10 6

k=2

n

k=83 4 5 k=12

k=16

Binary

Code
Length

(* Lengths of binary code and 7 Rice codes *)
bin[i_] := 1 + Floor[Log[2, i]];
Table[{Log[10, n], bin[n]}, {n, 1, 1000000, 500}];
gb = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{6, 2}]}]
rice[k_, n_] := 1 + k + Floor[n/2ˆk];
k = 2; Table[{Log[10, n], rice[k, n]}, {n, 1, 10000, 10}];
g2 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 3; Table[{Log[10, n], rice[k, n]}, {n, 1, 10000, 10}];
g3 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 4; Table[{Log[10, n], rice[k, n]}, {n, 1, 10000, 10}];
g4 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 5; Table[{Log[10, n], rice[k, n]}, {n, 1, 10000, 10}];
g5 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 8; Table[{Log[10, n], rice[k, n]}, {n, 1, 100000, 50}];
g8 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 12; Table[{Log[10, n], rice[k, n]}, {n, 1, 500000, 100}];
g12 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
k = 16; Table[{Log[10, n], rice[k, n]}, {n, 1, 1000000, 100}];
g16 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
Show[gb, g2, g3, g4, g5, g8, g12, g16, PlotRange -> {{0, 6}, {0, 120}}]

Figure 2.52: Lengths of Various Rice Codes.

2.26 Codes Ending with “1”
In general, the particular bits that constitute a code are irrelevant. Given a set of
codewords that have the desired properties, we don’t check the individual bits of a code
and object if there is a dearth of zeros or too few 1’s. Similarly, we don’t complain if
most or all of the codes start with a 1 or end with a 0. The important requirements
of variable-length codes are (1) to have a set of codes that feature the shortest average
length for a given statistical distribution of the source symbols and (2) to have a UD
code. However, there may be applications where it is advantageous to have codes that
start or end in a special way, and this section presents prefix codes that end with a 1.
The main contributors to this line of research are R. Capocelli, A. De Santis, T. Berger,
and R. Yeung (see [Capocelli and De Santis 94] and [Berger and Yeung 90]). They

140 2. Advanced Codes

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
0 0| 0|0 0|00 0|000 0|0000 0|00000
1 10| 0|1 0|01 0|001 0|0001 0|00001
2 110|0 10|0 0|10 0|010 0|0010 0|00010
3 110|1 10|1 0|11 0|011 0|0011 0|00011
4 1110|00 110|00 10|00 0|100 0|0100 0|00100
5 1110|01 110|01 10|01 0|101 0|0101 0|00101
6 1110|10 110|10 10|10 0|110 0|0110 0|00110
7 1110|11 110|11 10|11 0|111 0|0111 0|00111
8 11110|000 1110|000 110|000 10|000 0|1000 0|01000
9 11110|001 1110|001 110|001 10|001 0|1001 0|01001

10 11110|010 1110|010 110|010 10|010 0|1010 0|01010
11 11110|011 1110|011 110|011 10|011 0|1011 0|01011
12 11110|100 1110|100 110|100 10|100 0|1100 0|01100
13 11110|101 1110|101 110|101 10|101 0|1101 0|01101
14 11110|110 1110|110 110|110 10|110 0|1110 0|01110
15 11110|111 1110|111 110|111 10|111 0|1111 0|01111
16 111110|0000 11110|0000 1110|0000 110|0000 10|0000 0|10000

Table 2.53: Some Subexponential Codes.

discuss special applications and coin the term “feasible codes” for this type of prefix
codes. They also show several ways to construct such codes and prove the following
bounds on their average lengths. The average length E of an optimum feasible code
for a discrete source with entropy H satisfies H + pN ≤ E ≤ H + 1.5, where pN is the
smallest probability of a symbol from the source.

This section discusses a simple way to construct a set of feasible codes from a set
of Huffman codes. The main idea is to start with a set of Huffman codes and append
a 1 to each code that ends with a 0. Such codes are called “derived codes.” They are
easy to construct, but are not always the best feasible codes (they are not optimal). The
construction of the codes is as follows: Given a set of symbols and their probabilities,
construct their Huffman codes. The subset of codes ending with a 0 is denoted by C0
and the subset of codes ending with a 1 is denoted by C1. We also denote by p(C0) and
p(C1) the sum of probabilities of the symbols in the two subsets, respectively. Notice
that p(C0)+ p(C1) = 1, which implies that either p(C0) or p(C1) is less than or equal to
1/2 and the other one is greater than or equal to 1/2. If p(C0) ≤ 1/2, the derived code
is constructed by appending a 1 to each codeword in C0; the codewords in C1 are not
modified. If, on the other hand, p(C0) > 1/2, then the zeros and 1’s are interchanged
in the entire set of Huffman codes, resulting in a new p(C0) that is less than or equal to
1/2, and the derived code is constructed as before.

As an example, consider the set of six symbols with probabilities 0.26, 0.24, 0.14,
0.13, 0.12, and 0.11. The entropy of this set is easily computed at approximately 2.497
and one set of Huffman codes for these symbols (from high to low probabilities) is 11,
01, 101, 100, 001, and 000. The average length of this set is

0.26×2 + 0.24×2 + 0.14×3 + 0.13×3 + 0.12×3 + 0.11×3 = 2.5 bits.

2.26 Codes Ending with “1” 141

It is easy to verify that p(C0) = 0.13 + 0.11 = 0.24 < 0.5, so the derived code becomes
11, 01, 101, 1001, 001, and 0001, with an average size of 2.74 bits. On the other hand,
if we consider the set of Huffman codes 00, 10, 010, 011, 110, and 111 for the same
symbols, we compute p(C0) = 0.26 + 0.24 + 0.14 + 0.12 = 0.76 > 0.5, so we have to
interchange the bits and append a 1 to the codes of 0.13 and 0.11. This again results in
a derived code with an average length E of 2.74, which satisfies E < H + 1.5.

It is easy to see how the extra 1’s added to the codes increase its average size.
Suppose that subset C0 includes codes 1 through k. Originally, the average length of
these codes was E0 = p1l1 + p2l2 + · · ·+ pklk where li is the length of code i. After a 1
is appended to each of the k codes, the new average length is

E = p1(l1 + 1) + p2(l2 + 1) + · · ·+ pk(lk + 1) = E0 + (p1 + p2 + · · ·+ pk) ≤ E0 + 1/2.

The average length has increased by less than half a bit.

Any sufficiently advanced bug is indistinguishable from a feature.

—Arthur C. Clarke, paraphrased by Rich Kulawiec

3
Robust Codes
The many codes included in this chapter have a common feature; thet are robust. Any
errors that creep into a string of such codes either can be detected (or even corrected au-
tomatically) or have only limited effects and do not propagate indefinitely. The chapter
starts with a discussion of the principles of error-control codes.

3.1 Codes For Error Control

When data is stored or transmitted, it is often encoded. Modern data communications
is concerned with the following types of codes:

Reliability. The detection and removal of errors caused by noise in the communica-
tions channel (this is also referred to as channel coding or error-control coding).

Efficiency. The efficient encoding of the information in a small number of bits
(source coding or data compression).

Security. Protecting data against eavesdropping, intrusion, or tampering (the fields
of cryptography and data hiding).

This section and the next one cover the chief aspects of error-control as applied to
fixed-length codes. Section 3.3 returns to variable-length codes and the remainder of
this chapter is concerned with the problem of constructing reliable (or robust) codes.

Every time information is transmitted, over any channel, it may get corrupted by
noise. In fact, even when information is stored in a storage device, it may become bad,
because no piece of hardware is absolutely reliable. This important fact also applies to
non-computer information. Text written or printed on paper fades over time and the
paper itself degrades and may crumble. Audio and video data recorded on magnetic
media fades over time. Speech sent on the air becomes corrupted by noise, wind, and

144 3. Robust Codes

fluctuations of temperature and humidity. Speech, in fact, is a good starting point
for understanding the principles of error-control. Imagine a noisy cocktail party where
everybody talks simultaneously, on top of blaring music. We know that even in such a
situation it is possible to carry on a conversation, but more attention than normal is
needed.

What makes our language so robust, so immune to errors, are two properties, re-
dundancy and context.

Our language is redundant because only a very small fraction of all possible words
are valid. A huge number of words can be constructed with the 26 letters of the English
alphabet. Just the number of 7-letter words, for example, is 267 ≈ 8.031 billion. Yet
only about 50,000 words are commonly used in daily conversations, and even the Oxford
English Dictionary lists “only” about 500,000 words. When we hear a garbled word, our
brain searches through many similar words for the “closest” valid word. Computers are
very good at such searches, which is why redundancy is the basis of error-control codes.

Our brain works by associations. This is why we humans excel at using the context
of a message to locate and correct errors in the message. In receiving a sentence with a
garbled word or a word that doesn’t belong, such as “pass the thustard please,” we first
search our memory to find words that are associated with “thustard,” then we use our
accumulated life experience to select, among perhaps many possible candidates, the
word that best fits in the present context. If we are driving on the highway, we pass the
bastard in front of us; if we are at dinner, we pass the mustard (or custard). Another
example is the (corrupted) written sentence a*l n*tu*al l**gua*es a*e red***ant,
which we can easily complete. Computers don’t have much life experience and are
notoriously bad at such tasks, which is why context is not used in digital codes. In
extreme cases, where much of the sentence is bad, even we may not be able to correct
it, and we have to ask for a retransmission “say it again, Sam.”

The idea of using redundancy to add reliability to information is due to Claude
Shannon, the founder of information theory. It is not an obvious idea, since we are
conditioned against it. Most of the time, we try to eliminate redundancy in digital data,
in order to save space and compress the data. This habit is also reflected in our everyday,
nondigital behavior. We shorten Michael to Mike and Samuel to Sam, and it is a rare
Bob who insists on being a Robert.

There are several approaches to robust codes, but this section deals only with the
concept of check bits, because this leads to the important concept of Hamming distance.
Section 3.7 shows how this concept can be extended to variable-length codes.

Imagine a text message encoded in m-bit words (perhaps ASCII or Unicode) and
then stored or transmitted. We can make the message robust by adding several check
bits to the m data bits of each word of the message. We assume that k check bits are
appended to the original m information bits, to produce a codeword of n = m + k bits.
Such a code is referred to as an (n, m) code. The codewords are then transmitted and
decoded at the receiving end. Only certain combinations of the information bits and
check bits are valid, in analogy with a natural language. The decoder knows what the
valid codewords are. If a nonvalid codeword is received, the decoder considers it an
error. By adding more check bits, the decoder can also correct certain errors, not just

3.1 Codes For Error Control 145

detect them. The principle of error correction, not just detection, is that, on receiving
a bad codeword, the receiver selects the valid codeword that is the “closest” to it.

Example: Assume a set of 128 symbols (i.e., m = 7). If we select k = 4, we
end up with 128 valid codewords, each 11 bits long. This is an (11, 7) code. The valid
codewords are selected from a total of 211 = 2048 possible codewords, so there remain
2048− 128 = 1920 nonvalid codewords. The big difference between the number of valid
(128) and nonvalid (1920) codewords implies that if a codeword gets corrupted, chances
are that it will change to a nonvalid one.

It may, of course, happen that a valid codeword gets modified, during transmission,
to another valid codeword. Thus, our codes are not absolutely reliable, but can be made
more and more robust by adding more check bits and by selecting the valid codewords
carefully. The noisy channel theorem, one of the basic theorems of information theory,
states that codes can be made as reliable as desired, even in the presence of much noise,
by adding check bits and thus separating our codewords further and further, as long as
the rate of transmission does not exceed a certain quantity referred to as the channel’s
capacity.

It is important to understand the meaning of the word “error” in data processing and
communications. When an n-bit codeword is transmitted over a channel, the decoder
may receive the same n bits, it may receive n bits, some of which are bad, but it may also
receive fewer than or more than n bits. Thus, bits may be added, deleted, or changed
(substituted) by noise in the communications channel. In this section we consider only
substitution errors. A bad bit simply changes its value, either from 0 to 1, or from 1
to 0. This makes it relatively easy to correct the bit. If the error-control code tells the
receiver which bits are bad, the receiver corrects those bits by inverting them.

Parity bits represent the next step in error-control. A parity bit can be added to
a group of m information bits to complete the total number of 1’s to an odd number.
Thus, the (odd) parity of the group 10110 is 0, since the original group plus the parity
bit has an odd number (3) of 1’s. It is also possible to use even parity, and the only
difference between odd and even parity is that, in the case of even parity, a group of
all zeros is valid, whereas, with odd parity, any group of bits with a parity bit added,
cannot be all zeros.

Parity bits can be used to design simple, but not very efficient, error-correcting
codes. To correct 1-bit errors, the message can be organized as a rectangle of dimensions
(r− 1)× (s− 1). A parity bit is added to each row of s− 1 bits, and to each column of
r − 1 bits. The total size of the message (Table 3.1) is now s× r.

0 1 0 0 1
1 0 1 0 0
0 1 1 1 1
0 0 0 0 0
1 1 0 1 1
0 1 0 0 1

Table 3.1.

0 1 0 0 1
1 0 1 0
0 1 0
0 0
1

Table 3.2.

If only one bit becomes bad, a check of all s− 1 + r − 1 parity bits will detect the

146 3. Robust Codes

error, since only one of the s− 1 parities and only one of the r − 1 parities will be bad.
The overhead of a code is defined as the number of parity bits divided by the number

of information bits. The overhead of the rectangular code is, therefore,

(s− 1 + r − 1)
(s− 1)(r − 1)

≈ s + r

s× r − (s + r)
.

A similar, slightly more efficient code is a triangular configuration, where the in-
formation bits are arranged in a triangle, with the parity bits placed on the diagonal
(Table 3.2). Each parity bit is the parity of all the bits in its row and column. If the
top row contains r information bits, the entire triangle has r(r + 1)/2 information bits
and r parity bits. The overhead is therefore

r

r(r + 1)/2
=

2
r + 1

.

It is also possible to arrange the information bits in a number of two-dimensional
planes, to obtain a three-dimensional cube, three of whose six outer surfaces consist of
parity bits.

It is not obvious how to generalize these methods to more than 1-bit error correction.

Hamming Distance and Error Detecting. In the 1950s, Richard Hamming
conceived the concept of distance as a general way to use check bits for error detection
and correction.

Symbol code1 code2 code3 code4 code5

A 0000 0000 001 001001 01011
B 1111 1111 010 010010 10010
C 0110 0110 100 100100 01100
D 0111 1001 111 111111 10101
k: 2 2 1 4 3

Table 3.3: Codes with m = 2.

To illustrate this idea, we start with a simple example of four symbols A, B, C, and
D. Only two information bits are required, but the codes of Table 3.3 add some check
bits, for a total of 3–6 bits per symbol. The first of these codes, code1, is simple. Its
four codewords were selected from the 16 possible 4-bit numbers, and are not the best
possible ones. When the receiver receives one of them, say, 0111, it assumes that there
is no error and the symbol received is D. When a nonvalid codeword is received, the
receiver signals an error. Since code1 is not the best possible, not every error is detected.
Even if we limit ourselves to single-bit errors, this code is not very good. There are 16
possible single-bit errors in its four 4-bit codewords, and of those, the following four
cannot be detected: a 0110 changed during transmission to 0111, a 0111 modified to
0110, a 1111 corrupted to 0111, and a 0111 changed to 1111. Thus, the error detection
rate is 12 out of 16, or 75%. In contrast, code2 does a much better job. It can detect

3.1 Codes For Error Control 147

every single-bit error, because when only a single bit is changed in any of its codewords,
the result is not any of the other codewords. We say that the four codewords of code2
are sufficiently distant from one another. The concept of distance of codewords is easy
to describe.

1. Two codewords are a Hamming distance d apart if they differ in exactly d of
their n bits.

2. A code has a Hamming distance of d if every pair of codewords in the code is at
least a Hamming distance d apart.

(For mathematically-inclined readers.) These definitions have a simple geometric
interpretation. Imagine a hypercube in n-dimensional space. Each of its 2n corners can
be numbered by an n-bit number (Figure 3.4) such that each of the n bits corresponds to
one of the n dimensions of the cube. In such a cube, points that are directly connected
(near neighbors) have a Hamming distance of 1, points with a common neighbor have a
Hamming distance of 2, and so on. If a code with a Hamming distance of 2 is desired,
only points that are not directly connected should be selected as valid codewords.

1D
2D 3D

4D
10 11

00 01

010
110 111

1110

1111

101
001000

100

011

0 1

Figure 3.4: Cubes of Various Dimensions and Corner Numbering.

The “distance” approach to reliable communications is natural and has been em-
ployed for decades by many organizations—most notably armies, but also airlines and
emergency services—in the form of phonetic alphabets. We know from experience that
certain letters—such as F and S, or B, D, and V—sound similar over the telephone and
often cause misunderstanding in verbal communications (the pair 8 and H also comes to
mind). A phonetic alphabet replaces each letter by a word that starts with that letter,
selecting words that are “distant” in some sense, in order to remove any ambiguity.

Thus, replacing F by foxtrot and S by sierra guarantees reliable conversations,
because these words sound very different and will not be mistaken even under conditions
of noise and garbled communications.

The NATO phonetic alphabet is Alfa Bravo Charlie Delta Echo Foxtrot Golf Hotel
India Juliett Kilo Lima Mike November Oscar Papa Quebec Romeo Sierra Tango Uni-
form Victor Whiskey X-ray Yankee Zulu. For other phonetic alphabets, see [uklinux 07].
Reference [codethatword 07] may also be of interest to some.

148 3. Robust Codes

The reason code2 can detect all single-bit errors is that it has a Hamming distance
of 2. The distance between valid codewords is 2, so a 1-bit error always changes a valid
codeword into a nonvalid one. When two bits go bad, a valid codeword is moved to
another codeword at distance 2. If we want that other codeword to be nonvalid, the
code must have at least distance 3.

In general, a code with a Hamming distance of d + 1 can detect all d-bit errors.
In comparison, code3 has a Hamming distance of 2 and can therefore detect all 1-bit
errors even though it is short (n = 3). Similarly, code4 has a Hamming distance of 4,
which is more than enough to detect all 2-bit errors. It is now obvious that we can
increase the reliability of our data, but this feature does not come free. As always, there
is a tradeoff, or a price to pay, in the form of overhead. Our codes are much longer
than m bits per symbol because of the added check bits. A measure of the price is
n/m = m+k

m = 1 + k/m, where the quantity k/m is the overhead of the code. In the
case of code1 the overhead is 2, and in the case of code3 it is 3/2.

Example: A code with a single check bit, that is a parity bit (even or odd). Any
single-bit error can easily be detected since it creates a nonvalid codeword. Such a code
therefore has a Hamming distance of 2. Notice that code3 uses a single, odd, parity bit.

Example: A 2-bit error-detecting code for the same four symbols. It must have
a Hamming distance of at least 3, and one way of generating it is to duplicate code3
(which results in code4 with a distance of 4).

Unfortunately, the Hamming distance cannot be easily extended to variable-length
codes, because it is computed between codes of the same length. Nevertheless, there are
ways to extend it to variable-length codes and the most common of these is discussed
in Section 3.2.

Error-Correcting Codes. The principle of error-correcting codes is to separate
the codewords even farther by increasing the code’s redundancy (i.e., adding more check
bits). When an invalid codeword is received, the receiver corrects the error by selecting
the valid codeword that is closest to the one received. An example is code5, which has
a Hamming distance of 3. When one bit is modified in any of its four codewords, that
codeword is one bit distant from the original, but is still two bits distant from any of
the other codewords. Thus, if there is only one error, the receiver can always correct it.

In general, when d bits go bad in a codeword C1, it turns into an invalid codeword
C2 at a distance d from C1. If the distance between C2 and the other valid codewords
is at least d + 1, then C2 is closer to C1 than it is to any other valid codeword. This is
why a code with a Hamming distance of d+(d+1) = 2d+1 can correct all d-bit errors.

How are the codewords selected? The problem is to select a good set of 2m code-
words out of the 2n possible ones. The simplest approach is to use brute force. It is easy
to write a computer program that will examine all the possible sets of 2m codewords,
and will stop at the first one that has the right distance. The problems with this ap-
proach are (1) the time and storage required at the receiving end to verify and correct
the codes received, and (2) the amount of time it takes to examine all the possibilities.

Problem 1. The receiver must have a list of all the 2n possible codewords. For
each codeword, it must have a flag indicating whether it is valid, and if not, which valid
codeword is the closest to it. Every codeword received has to be searched for and found
in this list in order to verify it.

3.2 The Free Distance 149

Problem 2. In the case of four symbols, only four codewords need be selected.
For code1 and code2, these four codewords had to be selected from among 16 possible
numbers, which can be done in

(16
4

)
= 7280 ways. It is possible to write a simple program

that will systematically select sets of four codewords until it finds a set with the required
distance. In the case of code4, however, the four codewords had to be selected from a
set of 64 numbers, which can be done in

(64
4

)
= 635,376 ways. It is still possible to

write a program that will systematically explore all the possible codeword selections. In
practical cases, however, where sets of hundreds of symbols are involved, the number of
possibilities of selecting codewords is too large even for the fastest computers to handle
in reasonable time.

This is why sophisticated methods are needed to construct sets of error-control
codes. Such methods are out of the scope of this book but are discussed in many books
and publications on error control codes. Section 3.7 discusses approaches to developing
robust variable-length codes.

3.2 The Free Distance

The discussion above shows that the Hamming distance is an important metric (or
measure) of the reliability (robustness) of an error-control code. This section shows how
the concept of distance can be extended to variable-length codes. Given a code with s
codewords ci, we first construct the length vector of the code. We assume that there are
s1 codewords of length L1, s2 codewords of length L2, and so on, up to sm codewords of
length Lm. We also assume that the lengths Li are sorted such that L1 is the shortest
length and Lm is the longest. The length vector is (L1, L2, . . . , Lm).

The first quantity defined is bi, the minimum block distance for length Li. This is
simply the minimum Hamming distance of the si codewords of length Li (where i goes
from 1 to m). The overall minimum block length bmin is defined as the smallest bi.

We next look at all the possible pairs of codewords (ci, cj). The two codewords of
a pair may have different lengths, so we first compute the distances of their prefixes.
Assume that the lengths of ci and cj are 12 and 4 bits, respectively, we examine the
four leftmost bits of the two, and compute their Hamming distance. The minimum of
all these distances, over all possible pairs of codewords, is called the minimum diverging
distance of the code and is denoted by dmin.

Next, we do the same for the postfixes of the codewords. Given a pair of codewords
of lengths 12 and 4 bits, we examine their last (rightmost) four bits and compute their
Hamming distance. The smallest of these distances is the minimum converging distance
of the code and is denoted by cmin.

The last step is more complex. We select a positive integer N and construct all the
sequences of codewords whose total length is N . If there are many codewords, there may
be many sequences of codewords whose total length is N . We denote those sequences by
f1, f2, and so on. The set of all the N -bit sequences fi is denoted by FN . We compute
the Hamming distances of all the pairs (fi, fj) in FN for different i and j and select the
minimum distance. We repeat this for all the possible values of N (from 1 to infinity)
and select the minimum distance. This last quantity is termed the free distance of the

150 3. Robust Codes

code [Bauer and Hagenauer 01] and is denoted by dfree. The free distance of a variable-
length code is the single most important parameter determining the robustness of the
code. This metric is considered the equivalent of the Hamming distance, and [Buttigieg
and Farrell 95] show that it is bounded by

dfree ≥ min(bmin, dmin + cmin).

3.3 Synchronous Prefix Codes
Errors are a fact of life. They are all around us, are found everywhere, and are re-
sponsible for many glitches and accidents and for much misery and misunderstanding.
Unfortunately, computer data is not an exception to this rule and is not immune to
errors. Digital data written on a storage device such as a disk, CD, or DVD is subject
to corruption. Similarly, data stored in the computer’s internal memory can become
bad because of a sudden surge in the electrical voltage, a stray cosmic ray hitting the
memory circuits, or an extreme variation of temperature. When binary data is sent
over a communications channel, errors may creep up and damage the bits. This is why
error-detecting and error-correcting codes (also known as error-control codes or channel
codes) are so important and are used in many applications. Data written on CDs and
DVDs is made very reliable by including sophisticated codes that detect most errors and
can even correct many errors automatically. Data sent over a network between com-
puters is also often protected in this way. However, error-control codes have a serious
downside, they work by adding extra bits to the data (parity bits or check bits) and
thus increase both the redundancy and the size of the data. In this sense, error-control
(data reliability and integrity) is the opposite of data compression. The main goal of
compression is to eliminate redundancy from the data, but this inevitably decreases data
reliability and opens the door to errors and data corruption.

We are built to make mistakes, coded for error.
—Lewis Thomas

The problem of errors in communications (in scientific terms, the problem of noisy
communications channels or of sources of noise) is so fundamental, that the first figure
in Shannon’s celebrated 1948 papers [Shannon 48] shows a source of noise (Figure 3.5).

Information
Source Transmitter

Message Message
Signal

Signal
Received

Noise source

Receiver Destination

Figure 3.5: The Essence of Communications.

3.3 Synchronous Prefix Codes 151

As a result, reliability or lack thereof is the chief downside of variable-length codes.
A single error that creeps into a compressed stream can propagate and trigger many
consecutive errors when the stream is decompressed. We say that the decoder loses
synchronization with the data or that it slips while decoding. The first solution that
springs to mind, when we consider this problem, is to add an error-control code to
the compressed data. This solves the problem and results in reliable receiving and
decoding, but it requires the introduction of many extra bits (often about 50% of the
size of the data). Thus, this solution makes sense only in special applications, where
data reliability and integrity is more important than size. A more practical solution is
to develop synchronous codes. Such a code has one or more synchronizing codewords,
so it does not artificially increase the size of the compressed data. On the other hand,
such a code is not as robust as an error-control code and it allows for a certain amount
of slippage for each error. The idea is that an error will propagate and will affect that
part of the compressed data from the point it is encountered (from the bad codeword)
until the first synchronizing codeword is input and decoded. The corrupted codeword
and the few codewords following it (the slippage region) will be decoded into the wrong
data symbols, but the synchronizing codeword will synchronize the decoder and stop the
propagation of the error. The decoder will recognize either the synchronizing codeword
or the codeword that follows it and will produce correct output from that point. Thus,
a synchronous code is not as reliable as an error-control code. It allows for a certain
amount of error propagation and should be used only in applications where that amount
of bad decoded data is tolerable. There is also the important consideration of the
average length of a synchronous code. Such a code may be a little longer than other
variable-length codes, but it shouldn’t be much longer.

The first example shows how a single error can easily propagate through a com-
pressed file that’s being decoded and cause a long slippage. We consider the simple
feasible code 0001, 001, 0101, 011, 1001, 101, and 11. If we send the string of codewords
0001|101|011|101|011|101|011| . . . and the third bit (in boldface) gets corrupted to a 1,
then the decoder will decode this as the string 001|11|0101|11|0101|11| . . ., resulting in
a long slippage.

However, if we send 0101|011|11|101|0001| . . . and the third bit goes bad, the de-
coder will produce 011|101|11|11|010001 The last string (010001) serves as an error
indicator for the decoder. The decoder realizes that there is a problem and the best way
for it to resynchronize itself is to skip a bit and try to decode first 10001. . . (which fails)
and then 0001 (a success). The damage is limited to a slippage of a few symbols, because
the codeword 0001 is synchronizing. Similarly, 1001 is also a synchronizing codeword,
so a string of codewords will synchronize itself after an error when 1001 is read. Thus
0101|011|11|101|1001| . . . is decoded as 011|101|11|11|011|001 . . ., thereby stopping the
slippage.

Slippage: The act or an instance of slipping, especially movement away from an
original or secure place.

The next example is the 4-ary code of Table 3.9 (after [Capocelli and De Santis 92]),
where the codewords flagged by an “*” are synchronizing. Consider the string of code-
words 0000|100|002|3| . . . where the first bit is damaged and is input by the decoder as 1.
The decoder will generate 100|01|0000|23| . . ., thereby limiting the slippage to four sym-

152 3. Robust Codes

bols. The similar string 0000|100|002|23| . . . will be decoded as 100|01|0000|22|3 . . ., and
the error in the code fragment 0000|100|002|101| . . . will result in 100|01|0000|21|01
In all cases, the damage is limited to the substring from the position of the error to the
location of the synchronizing codeword.

The material that follows is based on [Ferguson and Rabinowitz 84]. In order to
understand how a synchronizing codeword works, we consider a case where an error has
thrown the decoder off the right track. If the next few bits in the compressed file are
101110010. . . , then the best thing for the decoder to do is to examine this bit pattern
and try to locate a valid codeword in it. The first bit is 1, so the decoder concentrates
on all the codewords that start with 1. Of these, the decoder examines all the codewords
that start with 10. Of these, it concentrates on all the codewords that starts with 101,
and so on. If 101110010. . . does not correspond to any codeword, the decoder discards
the first bit and examines the string 01110010. . . in the same way.

Based on this process, it is easy to identify the three main cases that can occur at
each decoding step, and through them to figure out the properties that a synchronizing
codeword should have. The cases are as follows:

1. The next few bits constitute a valid codeword. The decoder is synchronized and
can proceed normally.

2. The next few bits are part of a long codeword a whose suffix is identical to
a synchronizing codeword b. Suppose that a = 1|101110010 and b = 010. Suppose
also that because of an error the decoder has become unsynchronized and is positioned
after the first bit of a (at the vertical bar). When the decoder examines bit patterns as
discussed earlier and skips bits, it will eventually arrive at the pattern 010 and identify
it as the valid codeword b. We know that this pattern is the tail (suffix) of a and is not b,
but the point is that b has synchronized the decoder and the error no longer propagates.
Thus, we know that for b to be a synchronizing codeword, it has to satisfy the following:
If b is a substring of a longer codeword a, then b should be the suffix of a and should
not reappear elsewhere in a.

3. The decoder is positioned in front of the string 100|11001 . . . where the 100 is the
tail (suffix) of a codeword x that the decoder cannot identify because of a slippage, and
11001 is a synchronizing codeword c. Assume that the bit pattern 100|110 (the suffix of
x followed by the prefix of c) happens to be a valid codeword. If the suffix 01 of c is a
valid codeword a, then c would do its job and would terminate the slippage (although
it wouldn’t be identified by the decoder).

Based on these cases, we list the two properties that a codeword should have in
order to be synchronizing. (1) If b is a synchronizing codeword and it happens to be
the suffix of a longer codeword a, then b should not occur anywhere else in a. (2) If a
prefix of b is identical to a suffix of another codeword x, then the remainder of b should
be either a valid codeword or identical to several valid codewords. These two properties
can be considered the definition of a synchronizing codeword.

Now assume that C is a synchronous code (i.e., a set of codewords, one or more
of which are synchronizing) and that c is a synchronizing codeword in C. Codeword
c is the variable-length code assigned to a symbol s of the alphabet, and we denote
the probability of s by p. Given a long string of data symbols, s will appear in it 1/p
percent of the time. Equivalently, every (1/p)th symbol will on average be s. When
such a string is encoded, codeword c will appear with the same frequency and will

3.3 Synchronous Prefix Codes 153

therefore limit the length of any slippage to a value proportional to 1/p. If a code C

includes k synchronizing codewords, then on average every (1/
∑k

i pi)th codeword will be
a synchronizing codeword. Thus, it is useful to have synchronizing codewords assigned
to common (high probability) symbols. The principle of compression with variable-
length codes demands that common symbols be assigned short codewords, leading us to
conclude that the best synchronous codes are those that have many synchronizing short
codewords. The shortest codewords are single bits, but since 0 and 1 are always suffixes,
they cannot satisfy the definition above and cannot serve as synchronizing codewords
(however, in a nonbinary code, such as a ternary code, one-symbol codewords can be
synchronizing as illustrated in Table 3.9).

Table 3.6 lists four Huffman codes. Code C1 is nonsynchronous and code C2 is
synchronous. Figure 3.7 shows the corresponding Huffman code trees. Starting with the
data string ADABCDABCDBECAABDECA, we repeat the string indefinitely and encode it in
C1. The result starts with 01|000|01|10|11|000|01|10|11|000|10|001| . . . and we assume
that the second bit (in boldface) gets corrupted. The decoder, as usual, inputs the string
0000001101100001101100010001. . . , proceeds normally, and decodes it as the bit string
000|000|11|01|10|000|11|01|10|001|000|1 . . ., resulting in unbounded slippage. This is a
specially-contrived example, but it illustrates the risk posed by a nonsynchronous code.

Symbol A B C D E

Prob. 0.3 0.2 0.2 0.2 0.1
C1 01 10 11 000 001
C2 00 10 11 010 011

Symbol A B C D E F

Prob. 0.3 0.3 0.1 0.1 0.1 0.1
C3 10 11 000 001 010 011
C4 01 11 000 001 100 101

Table 3.6: Synchronous and Nonsynchronous Huffman Codes.

BA

D

C

E

1

11

1

1

1

11

0

00

0

0

0 0

0

C1 C2

D E

A B C

Figure 3.7: Strongly Equivalent Huffman Trees.

In contrast, code C2 is synchronized, with the two synchronizing codewords 010 and
011. Codeword 010 is synchronizing because it satisfies the two parts of the definition
above. It satisfies part 1 by default (because it is the longest codeword) and it satisfies
part 2 because its suffix 10 is a valid codeword. The argument for 011 is similar. Thus,
since both codes are Huffman codes and have the same average code length, code C2 is
preferable.

In [Ferguson and Rabinowitz 84], the authors concentrate on the synchronization
of Huffman codes. They describe a twisting procedure for turning a nonsynchronous
Huffman code tree into an equivalent tree that is synchronous. If the procedure can

154 3. Robust Codes

BA

DC E F
C3 C4

10

DC

1010

E F

10

10

A

10 10
10

10
10

B

Figure 3.8: Weakly Equivalent Huffman Trees.

be carried out, then the two codes are said to be strongly equivalent. However, this
procedure cannot always be performed. Code C3 of Table 3.6 is nonsynchronous, while
code C4 is synchronous (with 101 as its synchronizing codeword). The corresponding
Huffman code trees are shown in Figure 3.8 but C3 cannot be twisted into C4, which
is why these codes are termed weakly equivalent. The same reference also proves the
following criteria for nonsynchronous Huffman codes:

1. Given a Huffman code where the codewords have lengths li, denote by (l1, . . . , lj)
the set of all the different lengths. If the greatest common divisor of this set does
not equal 1, then the code is nonsynchronous and is not even weakly equivalent to a
synchronous code.

2. For any n ≥ 7, there is a Huffman code with n codewords that is nonsynchronous
and is not weakly equivalent to a synchronous code.

3. A Huffman code in which the only codeword lengths are l, l + 1, and l + 3 for
some l > 2, is nonsynchronous. Also, for any n ≥ 12, there is a source where all the
Huffman codes are of this type.

The greatest common divisor (gcd) of a set of nonzero integers li is the largest integer
that divides each of the li evenly (without remainders). If the gcd of a set is 1, then
the members of the set are relatively prime. An example of relatively prime integers
is (9, 28, 29).

These criteria suggest that many Huffman codes are nonsynchronous and cannot
even be modified to become synchronous. However, there are also many Huffman codes
that are either synchronous or can be twisted to become synchronous. We start with the
concept of quantized source. Given a source S of data symbols with known probabilities,
we construct a Huffman code for the source. We denote the length of the longest
codeword by L and denote by αi the number of codewords with length i. The vector
S = (α1, α2, . . . , αL) is called the quantized representation of the source S. A source
is said to be gapless if the first nonzero αi is followed only by nonzero αj (i.e., if all
the zero α’s are concentrated at the start of the quantized vector). The following are
criteria for synchronous Huffman codes:

1. If α1 is positive (i.e., there are some codewords with length 1), then any Huffman
code for S is synchronous.

2. Given a gapless source S where the minimum codeword length is 2, then S has
a synchronous Huffman code, unless its quantized representation is one of the following
(0, 4), (0, 1, 6), (0, 1, 1, 10), and (0, 1, 1, 1, 18).

3.3 Synchronous Prefix Codes 155

The remainder of this section is based on [Capocelli and De Santis 92], a paper that
offers an advanced discussion of synchronous prefix codes, with theorems and proofs.
We present only a short summary of the many results discovered by these authors.
Given a feasible code (Section 2.26) where the length of the longest codeword is L,
all the codewords of the form 00 . . . 0︸ ︷︷ ︸

L−1

1, 00 . . . 0︸ ︷︷ ︸
L−2

1, and 1 00 . . . 0︸ ︷︷ ︸
L−2

1, are synchronizing

codewords. If there are no such codewords, it is possible to modify the code as follows.
Select a codeword of length L with the most number of consecutive zeros on the left
00 . . . 0︸ ︷︷ ︸

j

1x . . . x and change the 1 to a 0 to obtain 00 . . . 0︸ ︷︷ ︸
j+1

x . . . x. Continue in this way,

until all the x bits except the last one have been changed to 1’s and the codeword has
the format 00 . . . 0︸ ︷︷ ︸

L−1

1. This codeword is now synchronizing.

As an example, given the feasible code 0001, 001, 0101, 011, 1001, 101, and 11,
L = 4 and the three codewords in boldface are synchronizing. This property can be
extended to nonbinary codes, with the difference that instead of a 1, any digit other
than 0 can be substituted. Thus, given the feasible ternary code 00001, 0001, 0002, 001,
002, 01, 02, 1001, 101, 102, 201, 21, and 22, L equals 5 and the first three codewords
are synchronizing. Going back to the definition of a synchronizing codeword, it is easy
to show by direct checks that the first 11 codewords of this code satisfy this definition
and are therefore synchronizing.

Table 3.9 (after [Capocelli and De Santis 92]) lists a 4-ary code for the 21-character
Latin alphabet. The rules above imply that all the codewords that end with 3 are syn-
chronizing, while our previous definition shows that 101 and 102 are also synchronizing.

Letter Freq. Code Letter Freq. Code Letter Freq. Code

h 5 0000 d 17 *101 r 67 20
x 6 0001 l 21 *102 s 68 21
v 7 0002 p 30 *103 a 72 22
f 9 100 c 33 11 t 72 *03
b 12 001 m 34 12 u 74 *13
q 13 002 o 44 01 e 92 *23
g 14 *003 n 60 02 i 101 *3

Table 3.9: Optimal 4-ary Synchronous Code for the Latin Alphabet.

See also the code of Section 2.20.1.

156 3. Robust Codes

3.4 Resynchronizing Huffman Codes

Because of the importance and popularity of Huffman codes, much research has gone
into every aspect of these codes. The work described here, due to [Rudner 71], shows
how to identify a resynchronizing Huffman code (RHC), a set of codewords that allows
the decoder to always synchronize itself following an error. Such a set contains at least
one synchronizing codeword (SC) with the following property: any bit string followed
by an SC is a sequence of valid codewords.

0111 0110
010

0011 0010
000111 110

10

0
0

00
0

0

1
1

1
1 1

1

Figure 3.10: A Resynchronizing Huffman Code Tree.

Figure 3.10 is an example of such a code. It is a Huffman code tree for nine symbols
having probabilities of occurrence of 1/4, 1/8, 1/8, 1/8, 1/8, 1/16, 1/16, 1/16, and 1/16.
Codeword 010 (underlined) is an SC. A direct check verifies that any bit string followed
by 010 is a sequence of valid codewords from this tree. For example, 001010001|010 is the
string of four codewords 0010|10|0010|10. If an encoded file has an error at point A and
an SC appears later, at point B, then the bit string from A to B (including the SC) is a
string of valid codewords (although not the correct codewords) and the decoder becomes
synchronized at B (although it may miss decoding the SC itself). Reference [Rudner 71]
proposes an algorithm to construct an RHC, but the lengths of the codewords must
satisfy certain conditions.

Given a set of prefix codewords, we denote the length of the shortest code by m.
An integer q < m is first determined by a complex test (listed below) that goes over
all the nonterminal nodes in the code tree and counts the number of codewords of the
same length that are descendants of the node. Once q has been computed, the SC is the
codeword 0q1m−q0q. It is easy to see that m = 2 for the code tree of Figure 3.10. The
test results in q = 1, so the SC is 010.

In order for an SC to exist, the code must either have m = 1 (in which case the SC
has the form 02q) or must satisfy the following conditions:

1. The value of m is 2, 3, or 4.
2. The code must contain codewords with all the lengths from m to 2m− 1.
3. The value of q that results from the test must be less than m.

Figure 3.11 is a bigger example with 20 codewords. The shortest codeword is three
bits long, so m = 3. The value of q turns out to be 2, so the SC is 00100. A random bit
string followed by the SC, such as 01000101100011100101010100010101|00100, becomes
the string of nine codewords 0100|01011|00011|100|1010|1010|00101|0100|100.

The test to determine the value of q depends on many quantities that are defined
in [Rudner 71] and are too specialized to be described here. Instead, we copy this test
verbatim from the reference.

3.4 Resynchronizing Huffman Codes 157

1

1

2

3

4

5

6

1

1

1 1

1

1

1

11

1

1

0

0

0

0 0

0

00011

00011

00100

00100

00101

00101

00110

00110

00111
00111

0101001010 01011
01011

0

000100
000100

000101000101

0

00

0

1111

1111

1110

1110

1101

1101

1100

1100

1011

1011

1010

1010

0111

0111

0110

0110

0100

0100

100

100

0000

0000

0

0

Figure 3.11: A Resynchronizing Huffman Code Tree With 20 Codewords.

“Let index I have 2 ≤ m ≤ 4 and p < m. Let

Qj(h) = (h + m− j) +
j∑

x=j−m+2

cx−h−1,x

where ca,b = 0 for a ≤ 0. Let q be the smallest integer p ≤ q < m, if any exists, for
which nj ≥ Qj(q) for all j, m ≤ j ≤ M . If no such integer exists, let q = max(m, p).
Then r0 ≥ q + m.”

The operation of an SC is especially simple when it follows a nonterminal node in
the code tree. Checking Figure 3.11 verifies that when any interior node is followed by
the SC, the result is either one or two codewords. In the former case, the SC is simply
a suffix of the single resulting codeword, while in the latter case, some of the leftmost
zeros of the SC complete the string of the interior node, and the remainder of the SC (a
string of the form 0k1m−q0q, where k is between 0 and q − 1) is a valid codeword that
is referred to as a reset word.

In the code tree of Figure 3.11, the reset words are 0100 and 100. When the interior
node 0101 is followed by the SC, the result is 01010|0100. When 0 is followed by the
SC, the result is 000100, and when 01 is followed by 00100, we obtain 0100|100. Other
codewords may also have this property (i.e., they may reset certain interior nodes). This
happens when a codeword is a suffix of another codeword, such as 0100, which is a suffix
of 000100 in the tree of Figure 3.11.

Consider the set that consists of the SC (whose length is m + q bits) and all the
reset words (which are shorter). This set can reset all the nonterminal nodes, which
implies a certain degree of nonuniformity in the code tree. The tree of Figure 3.11 has
levels from 1 to 6, and a codeword at level D is D bits long. Any node (interior or not)
at level D must therefore have at least one codeword of length L that satisfies either
D + 1 ≤ L ≤ D + q − 1 (this corresponds to the case where appending the SC to the
node results in two codewords) or L = D + q + m (this corresponds to the case where
appending the SC to the node results in one codeword). Thus, the lengths of codewords
in the tree are restricted and may not truely reflect the data symbols’ probabilities.

158 3. Robust Codes

Another aspect of this restriction is that the number of codewords of the same length
that emanate from a nonterminal node is at most 2q. Yet another nonuniformity is that
short codewords tend to concentrate on the 0-branch of the tree. This downside of the
RHC has to be weighed against the advantage of having a resynchronizing code.

Another important factor affecting the performance of an RHC is the expected time
to resynchronize. From the way the Huffman algorithm works, we know that a codeword
of length L appears in the encoded stream with probability 1/2L. The length of the SC
is m+q, so if we consider only the resynchronization provided by the SC, and ignore the
reset words, then the expected time τ to resynchronize (the inverse of the probability
of occurrence of the SC) is 2m+q. This is only an upper bound on τ , because the reset
words also contribute to synchronization and reduce the expected time τ . If we assume
that the SC and all the reset words reset all the nonterminal (interior) nodes, then it
can be shown that

1
2m−1 − 2m+q

is a lower bound on τ . Better estimates of τ can be computed for any given code tree
by going over all possible errors, determining the recovery time τi for each possible error
i, and computing the average τ .

An RHC allows the decoder to resynchronize itself as quickly as possible following an
error, but there still are two points to consider: (1) the number of data symbols decoded
while the decoder is not synchronized may differ from the original number of symbols
and (2) the decoder does not know that a slippage occurred. In certain applications,
such as run-length encoding of bi-level images, where runs of identical pixels are decoded
and placed consecutively in the decoded image, these points may cause a noticeable error
when the decoded image is later examined.

A possible solution, due to [Lam and Kulkarni 96], is to take an RHC and modify
it by including an extended synchronizing codeword (ESC), which is a bit pattern that
cannot appear in any concatenation of codewords. The resulting code is no longer an
RHC, but is still an RVLC (reversible VLC, page 161). The idea is to place the ESC
at regular intervals in the encoded bitstream, say, after every 10 symbols or at the end
of each line of text or each row of pixels. When the decoder decodes an ESC, it knows
that 10 symbols should have been decoded since the previous ESC. If this is not true,
the decoder can issue an error message, warning the user of a potential synchronization
problem.

In order to understand the particular construction of an ESC, we consider all the
cases in which a codeword c can be decoded incorrectly when there are errors preceding
it. Luckily, there are only two such cases, illustrated in Figure 3.12.

(a) (b)

c c

Figure 3.12: Two Ways to Incorrectly Decode a Codeword.

In part (a) of the figure, a prefix of c is decoded as the suffix of some other codeword

3.5 Bidirectional Codes 159

and a suffix of c is decoded as the prefix of another codeword (in between, parts of c
may be decoded as several complete codewords). In part (b), codeword c is concatenated
with some bits preceding it and some bits following it, to form a valid codeword. This
simple analysis points the way toward an ESC, because it is now clear that this bit
pattern should satisfy the following conditions:

1. If the ESC can be written as the concatenation of two bit strings αβ where α
is a suffix of some codeword, then β should not be the prefix of any other codeword.
Furthermore, if β itself can be written as the concatenation of two bit strings γδ, then γ
can be empty or a concatenation of some codewords, and δ should be nonempty, should
not be the prefix of any codeword, and no codeword should be a prefix of δ. This takes
care of case (a).

2. The ESC should not be a substring of any codeword. This takes care of case (b).

If the ESC satisfies these conditions, then the decoder can recognize it even in the
presence of errors preceding it. Once the decoder recognizes the ESC, it reads the bits
that follow until it can continue the decoding. As can be expected, the life of a researcher
in the field of coding is never that simple. It may happen that an error corrupts part of
the encoded bit stream into an ESC. Also, an error can corrupt the ESC pattern itself.
In these cases, the decoder loses synchronization, but regains it when the next ESC is
found later. It is also possible to append a fixed-size count to each ESC, such that the
first ESC is followed by a count of 1, the second ESC is followed by a 2, and so on. If
the latest ESC had a count i−1 and the next ESC has a count of i+1, then the decoder
knows that the ESC with a count of i has been missed because of such an error. If the
previous ESC had a count of i and the current ESC has a completely different count,
then the current ESC is likely spurious.

Given a Huffman code tree, how can an ESC be constructed? We first observe that it
is always possible to rearrange a Huffman code tree such that the longest codeword (the
codeword of the least-probable symbol) consists of all 1’s. If this codeword is 1k, then
we construct the ESC as the bit pattern 1k1k−10 = 12k−10. This pattern is longer than
the longest codeword, so it cannot be a substring of any codeword, thereby satisfying
condition 2 above. For condition 1, consider the following. All codeword suffixes that
consist of consecutive 1’s can have anywhere from no 1’s to (k−1) 1’s. Therefore, if any
prefix of the ESC is the suffix of a codeword, the remainder of the ESC will be a string
of the form 1j0 where j is between k and 2k − 1, and such a string is not the prefix of
any codeword, thereby satisfying condition 1.

3.5 Bidirectional Codes

This book, like others by the same author, is enlivened by the use of quotations and
epigraphs. Today, it is easy to search the Internet and locate quotations on virtually any
topic. Many web sites maintain large collections of quotations, there are many books
whose full text can easily be searched, and the fast, sophisticated Internet search engines
can locate many occurrences of any word or phrase.

Before the age of computers, the task of finding words, phrases, and full quotations
required long visits to a library and methodical reading of many texts. For this reason,

160 3. Robust Codes

scholars sometimes devoted substantial parts of their working careers to the preparation
of a concordance.

A concordance is an alphabetical list of the principal words found in a book or a
body of work, with their locations (page and line numbers) and immediate contexts.
Common words such as “of” and “it” are excluded. The task of manually compiling
and publishing a concordance was often gargantuan, which is why concordances were
generated only for highly-valued works, such as the Bible, the writings of St. Thomas
Aquinas, the Icelandic sagas, and the works of Shakespeare and Wordsworth.

The emergence of the digital computer, in the late 1940s and early 1950s, has given
a boost to the art of concordance compiling. Suddenly, it has become possible to store
an entire body of literature in the computer and point to all the important words in it.
It was also in the 1950s that Hans Peter Luhn, a computer scientist at IBM, conceived
the technique of KWIC indexing. The idea was to search a concordance for a given
word and display or print a condensed list of all the occurrences of the word, each with
its location (page and line numbers) and immediate context. KWIC indexing remained
popular for many years until it became superseded by the full text search that so many
of us take for granted.

KWIC is an acronym for Key Word In Context, but like so many acronyms it has
other meanings such as Kitchen Waste Into Compost, Kawartha World Issues Center,
and Kids’ Well-being Indicators Clearinghouse.

The following KWIC example lists the first 15 results of searching for the word may
in a large collection (98,000 items) of excerpts from academic textbooks and introductory
books located at the free concordance [amu 06].

No: Line: Concordance
1: 73: in the National Grid - which may accompany the beginning or end of
2: 98: of a country, however much we may analyze it into separate rules,
3: 98: and however much the analysis may be necessary to our understanding
4: 104: y to interpret an Act a court may sometimes alter considerably the
5: 110: ectly acquainted with English may know the words of the statute, but
6: 114: ime. Therefore in a sense one may speak of the Common Law as unwritten
7: 114: e for all similar cases which may arise in the future. This binding
8: 120: court will not disregard. It may happen that a question has never
9: 120: ven a higher court, though it may think a decision of a lower court
10: 122: ween the parties. The dispute may be largely a question of fact.
11: 122: nts must be delivered, and it may often be a matter of doubt how far
12: 138: of facts. The principles, it may be, give no explicit answer to the
13: 138: the conclusions of a science may be involved in its premisses, and
14: 144: at conception is that a thing may change and yet remain the same thing.
15: 152: ions is unmanageable, Statute may undertake the work of codification,

Thus, a computerized concordance that supports KWIC searches consists of a set
of texts and a dictionary. The dictionary lists all the important words in the texts, each
with pointers to all its occurrences. Because of their size, the texts are normally stored
in compressed format where each character is assigned a variable-length code (perhaps a
Huffman code). The software inputs a search term, such as may, from the user, locates it
in the dictionary, follows the first pointer to the text, and reads the immediate context of
the first occurrence of may. The point is that this context both precedes and follows the
word, but Huffman codes (and variable-length codes in general) are designed to be read

3.5 Bidirectional Codes 161

and decoded from left to right (from early to late). In general, when reading a group
of variable-length codes, it is impossible to reverse direction and read the preceding
code, because there is no way to tell its length. We say that variable-length codes are
unidirectional, but there are applications where bidirectional (or reversible) codes are
needed.

Computerized concordances and KWIC indexing is one such application. Another
application, no less important, is data integrity. We already know, from the discussion
of synchronous codes in Section 3.3, that errors may occur and they tend to propagate
through a sequence of variable-length codes. One way to limit error propagation (slip-
page) is to organize a compressed file in records, where each record consists of several
variable-length codes. The record is read and decoded from beginning to end, but if an
error is discovered, the decoder tries to read the record from end to start. If there is only
one error in the record, the two readings and decodings can sometimes be combined to
isolate the error and perhaps even to correct it

There are other, much less important applications of bidirectional codes. In the
early days of the digital computer, magnetic tapes were the main input/output devices.
A tape is sequential storage that lends itself to linear reading and writing. If we want
to read an early record from a tape, we generally have to rewind the tape and then skip
forward to the desired record. The ability to read a tape backward can speed up tape
input/output and make the tape look more like a random-access I/O device. Another
example of the use of bidirectional codes is a little-known data structure called deque
(short for double-ended queue, and sometimes spelled “dequeue”). This is a linear data
structure where elements can be added to or deleted from either end. (This is in contrast
to a queue, where elements can only be added to the head and deleted from the tail.)
If the elements of the deque are compressed by means of variable-length codes, then
bidirectional codes allow for easy access of the structure from either end.

A good programmer is someone who always looks both ways before
crossing a one-way street.

—Doug Linder

It should be noted that fixed-length codes are bidirectional, but they generally do
not provide any compression (the Tunstall code of Section 1.6 is an exception). We say
that fixed-length codes are trivially bidirectional. Thus, we need to develop variable-
length codes that are as short as possible on average but are also bidirectional. The
latter requirement is important, because the bidirectional codes are going to be used for
compression (where they are often called reversible VLCs or RVLCs). Anyone with even
little experience in the field of variable-length codes will immediately realize that it is
easy to design bidirectional codes. Simply dedicate a bit pattern p to be both the prefix
and suffix of all the codes, and make sure that p does not appear inside a code. Thus, if
p = 101, then 101|10011001001|101 is an example of such a code. It is easy to see that
such codes can be read in either direction, but it is also obvious that they are too long,
because the code bits between the suffix and prefix are restricted to patterns that do
not contain p. A little thinking shows that p doesn’t even have to appear twice in each
code. A code where each codeword ends with p is bidirectional. A string of such codes
has the form papbpc . . . pypz and it is obvious that it can be read in either direction.
The taboo codes of Section 2.15 are an example of this type of variable-length code.

162 3. Robust Codes

The average length of a code is therefore important even in the case of bidirectional
codes. Recall that the most common variable-length codes can be decoded easily and
uniquely because they are prefix codes and therefore instantaneous. This suggests the
idea of constructing a suffix code, a code where no codeword is the suffix of another
codeword. A suffix code can be read in reverse and decoded uniquely in much the same
way that a prefix code is uniquely decoded. Thus, a code that is both a prefix code and
a suffix code is bidirectional. Such a code is termed affix (although some authors use
the terms “biprefix” and “never-self-synchronizing”).

The next few paragraphs are based on [Fraenkel and Klein 90], a work that analyses
Huffman codes, looking for ways to construct affix Huffman codes or modify existing
Huffman codes to make them affix and thus bidirectional. The authors first show how
to start with a given affix Huffman code C and double its size. The idea is to take every
codeword ci in C and create two new codewords from it by appending a bit to it. The
two new codewords are therefore ci0 and ci1. The resulting set of codewords is affix as
can be seen from the following argument.

1. No other codeword in C starts with ci (ci is not the prefix of any other codeword).
Therefore, no other codeword in the new code starts with ci. As a result, no other
codeword in the new code starts with ci0 or ci1.

2. Similarly, ci is not the suffix of any other codeword in C, therefore neither ci0
nor ci1 are suffixes of a codeword in the new code.

Given the affix Huffman code 01, 000, 100, 110, 111, 0010, 0011, 1010, and 1011,
we apply this method to double it and construct the code 010, 0000, 1000, 1100, 1110,
00100, 00110, 10100, 011, 0001, 1001, 1101, 1111, 00101, 00111, and 10101. A simple
check verifies that the new code is affix. The conclusion is that there are infinitely many
affix Huffman codes.

On the other hand, there are cases where affix Huffman codes do not exist. Con-
sider, for example, codewords of length 1. In the trivial case where there are only two
codewords, each is a single bit. This case is trivial and is also a fixed-length code. Thus,
a variable-length code can have at most one codeword of length 1 (a single bit). If a
code has such a codeword, then it is the suffix of other codewords, because in a com-
plete prefix code, codewords must end with both 0 and 1. Thus, a code one of whose
codewords is of length 1 cannot be affix. Such Huffman codes exist for sets of symbols
with skewed probabilities. In fact, it is known that the existence of a codeword ci of
length 1 in a Huffman code implies that the probability of the symbol that corresponds
to ci must be greater than 1/3.

The authors then describe a complex algorithm (not listed here) to construct affix
Huffman codes for cases where such codes exist.

There are many other ways to construct RVLCs from Huffman codes. Table 3.13
(after [Laković and Villasenor 03], see also Table 3.22) lists a set of Huffman codes for
the 26 letters of the English alphabet together with three RVLC codes for the same
symbols. These codes were constructed by algorithms proposed by [Takishima et al. 95],
[Tsai and Wu 01a], and [Laković and Villasenor 03].

The remainder of this section describes the extension of Rice codes and exponen-
tial Golomb (EG) codes to bidirectional codes (RVLCs). The resulting bidirectional
codes have the same average length as the original, unidirectional Rice and EG codes.
They have been adopted by the International Telecommunications Union (ITU) for use

3.5 Bidirectional Codes 163

p Huffman Takishima Tsai Laković
E 0.14878 001 001 000 000
T 0.09351 110 110 111 001
A 0.08833 0000 0000 0101 0100
O 0.07245 0100 0100 1010 0101
R 0.06872 0110 1000 0010 0110
N 0.06498 1000 1010 1101 1010
H 0.05831 1010 0101 0100 1011
I 0.05644 1110 11100 1011 1100
S 0.05537 0101 01100 0110 1101
D 0.04376 00010 00010 11001 01110
L 0.04124 10110 10010 10011 01111
U 0.02762 10010 01111 01110 10010
P 0.02575 11110 10111 10001 10011
F 0.02455 01111 11111 001100 11110
M 0.02361 10111 111101 011110 11111
C 0.02081 11111 101101 100001 100010
W 0.01868 000111 000111 1001001 100011
G 0.01521 011100 011101 0011100 1000010
Y 0.01521 100110 100111 1100011 1000011
B 0.01267 011101 1001101 0111110 1110111
V 0.01160 100111 01110011 1000001 10000010
K 0.00867 0001100 00011011 00111100 10000011
X 0.00146 00011011 000110011 11000011 11100111
J 0.00080 000110101 0001101011 100101001 100000010
Q 0.00080 0001101001 00011010011 0011101001 1000000010
Z 0.00053 0001101000 000110100011 1001011100 1000000111
Avg. length 4.15572 4.36068 4.30678 4.25145

Table 3.13: Huffman and Three RVLC Codes for the English Alphabet.

in the video coding parts of MPEG-4, and especially in the H.263v2 (also known as
H.263+ or H.263 1998) and H263v3 (also known as H.263++ or H.263 2000) video com-
pression standards [T-REC-h 06]. The material presented here is based on [Wen and
Villasenor 98].

The Rice codes (Section 2.24) are a special case of the more general Golomb code,
where the parameter m is a power of 2 (m = 2k). Once the base k has been chosen,
the Rice code of the unsigned integer n is constructed in two steps: (1) Separate the k
least-significant bits (LSBs) of n. They become the LSBs of the Rice code. (2) Code
the remaining j = �n/2k� bits in unary as either j zeros followed by a 1 or j 1’s followed
by a 0. This becomes the most-significant part of the Rice code. This code is therefore
easily constructed with a few logical operations.

Decoding is also simple and requires only the value of k. The decoder scans
the most-significant 1’s until it reaches the first 0. This gives it the value of the

164 3. Robust Codes

most-significant part of n. The least-significant part of n is the k bits following the
first 0. This simple decoding points the way to designing a bidirectional Rice code. The
second part is always k bits long, so it can be read in either direction. To also make
the first (unary) part bidirectional, we change it from 111 . . . 10 to 100 . . . 01, unless it
is a single bit, in which case it becomes a single 0. Table 3.14 lists several original and
bidirectional Rice codes. It should be compared with Table 2.50.

No. of Rice Rev.
n Binary LSB 1’s Code Rice

0 0 00 0 0|00 0|00
1 1 01 0 0|01 0|01
2 10 10 0 0|10 0|10
3 11 11 0 0|11 0|11
4 100 00 1 10|00 11|00
5 101 01 1 10|01 11|01
6 110 10 1 10|10 11|10
7 111 11 1 10|11 11|11
8 1000 00 2 110|00 101|00

11 1011 11 2 110|11 101|11
12 1100 00 3 1110|00 1001|00
15 1111 11 3 1110|11 1001|11

Table 3.14: Original and Bidirectional Rice Codes.

An interesting property of the Rice codes is that there are 2k codes of each length
and the lengths start at k + 1 (the prefix is at least one bit, and there is a k-bit suffix).
Thus, for k = 3 there are eight codes of length 4, eight codes of length 5, and so on. For
certain probability distributions, we may want the number of codewords of length L to
grow exponentially with L, and this feature is offered by a parametrized family of codes
known as the exponential Golomb codes. These codes were first proposed in [Teuhola 78]
and are also identical to the triplet (s, 1,∞) of start-step-stop codes. They perform well
for probability distributions that are exponential but are taller than average and have a
wide tail.

The exponential Golomb codes depend on the choice of a nonnegative integer pa-
rameter s (that becomes the length of the suffix of the codewords). The nonnegative
integer n is encoded in the following steps:

1. Compute w = 1 + �n/2s�.
2. Compute f2s(n) =

⌊
log2

[
1 + n

2s

]⌋
. This is the number of bits following the

leftmost 1 in the binary representation of w.
3. Construct the codeword EG(n) as the unary representation of f2s(n), followed

by the f2s(n) least-significant bits in the binary representation of w, followed by the s
least-significant bits in the binary representation of n.

Thus, the length of this codeword is the sum

l(n) = 1 + 2f2s(n) + s = 1 + 2
⌊
log2

[
1 +

n

2s

]⌋
+ s = P + s,

3.5 Bidirectional Codes 165

where P is the prefix (whose length is always odd) and s is the suffix of a codeword.
Because the logarithm is truncated, the length increases by 2 each time the logarithm
increases by 1, i.e., each time 1 + n/2s is a power of 2.

(As a side note, it should be mentioned that the exponential Golomb codes can be
further generalized by substituting an arbitrary positive integer parameter m for the
expression 2s. Such codes can be called generalized exponential Golomb codes.)

As an example, we select s = 1 and determine the exponential Golomb code of
n = 1110 = 10112. We compute w = 1+�11/2s� = 6 = 1102, f2(11) = �log2(11/2)� = 2,
and construct the three parts 110|10|1.

Table 3.15 lists (in column 2) several examples of the exponential Golomb codes for
s = 1. Each code has an s-bit suffix and the prefixes get longer with n. The table also
illustrates (in column 3) how these codes can be modified to become bidirectional. The
idea is to have the prefix start and end with 1’s, to fill the odd-numbered bit positions
of the prefix (except the two extreme ones) with zeros, and to fill the even-numbered
positions with bit patterns that represent increasing integers. Thus, for s = 1, the 16
(7+1)-bit codewords (i.e., the codewords for n = 14 through n = 29) have a 7-bit prefix
of the form 1x0y0z1 where the bits xyz take the eight values 000 through 111. Pairs of
consecutive codewords have the same prefix and differ in their 1-bit suffixes.

Exp. Rev.
n Golomb exp.

0 0|0 0|0
1 0|1 0|1
2 100|0 101|0
3 100|1 101|1
4 101|0 111|0
5 101|1 111|1
6 11000|0 10001|0
7 11000|1 10001|1
8 11001|0 10011|0
9 11001|1 10011|1

10 11010|0 11001|0
11 11010|1 11001|1

Table 3.15: Original and Bidirectional Exponential Golomb Codes.

Here is how the decoder can read such codewords in reverse and identify them.
The decoder knows the value of s, so it first reads the s-bit suffix. If the next bit (the
rightmost bit of the prefix) is 0, then the entire prefix is this single bit and the suffix
determines the value of n (between 0 and 2s−1). Otherwise, the decoder reads bits from
right to left, isolating the bits with even indexes (shown in boldface in Table 3.15) and
concatenating them from right to left, until an odd-indexed bit of 1 is found. The total
number of bits read is the length P of the prefix. All the prefixes of length P differ only
in their even-numbered bits, and a P -bit prefix (where P is always odd) has (P − 1)/2
such bits. Thus, there are 2(P−1)/2 groups of prefixes, each with 2s identical prefixes.
The decoder identifies the particular n in a group by the s-bit suffix.

166 3. Robust Codes

The bidirectional exponential Golomb codes therefore differ from the (original) ex-
ponential Golomb codes in their construction, but the two types have the same lengths.

The magical exclusive-OR. The methods presented earlier are based on sets of
Huffman, Rice, and exponential Golomb codes that are modified and restricted in order
to become bidirectional. In contrast, the next few paragraphs present a method, due
to [Girod 99], where any set of prefix codes Bi can be transformed to a bitstring C
that can be decoded in either direction. The method is simple and requires only logical
operations and string reversals. It is based on a well-known “magical” property of the
exclusive-OR (XOR) logical operation, and its only downside is the addition of a few
extra zero bits. First, a few words about the XOR operation and what makes it special.

The logical OR operation is familiar to many. It receives two bits a and b as its
inputs and it outputs one bit. The output is 1 if a or b or both are 1’s. The XOR
operation is similar but it excludes the case where both inputs are 1’s. Thus, the result
of (1 XOR 1) is 0. Both logical operations are summarized in the table.

a 0011
b 0101

a OR b 0111
a XOR b 0110

The table also shows that the XOR of any bit a with 0 is a.
What makes the XOR so useful is the following property: if c = a XOR b, then

b = a XOR c and a = b XOR c. This property is easily verified and it has made the
XOR very popular in many applications (see page 357 of [Salomon 03] for an interesting
example).

This useful property of the XOR is now exploited as follows. The first idea is to
start with a string of n data symbols and encode them with a prefix code to produce a
string B of n codewords B1B2 . . . Bn. Now reverse each codeword Bi to become B′

i and
construct the string B′ = B′

1B
′
2 . . . B′

n. Next, compute the final result C = B XOR B′.
The hope is that the useful property of the XOR will enable us to decode B from C with
the relation B = C XOR B′. This simple scheme does not work because the relation
requires knowledge of B′. We don’t know string B′, but we know that its components
are closely related to those of string B. Thus, the following trick becomes the key to
this elegant method. Denote by L the length of the longest codeword Bi, append L
zeros to B and prepend L zeros to B′ (more than L zeros can be used, but not fewer).
Now perform the operation C = (B 00 . . . 0︸ ︷︷ ︸

L

) XOR (00 . . . 0︸ ︷︷ ︸
L

B′). It is clear that the first

L bits of C are identical to the first L bits of B. Because of the choice of L, those L bits
constitute at least the first codeword B1 (there may be more than one codeword and
there may also be a remainder), so we can immediately reverse it to obtain B′

1. Now we
can read more bits from C and XOR them with B′

1 to obtain more bits with parts of
codewords from B. This unusual decoding procedure is best illustrated by an example.

We start with five symbols a1 through a5 and assign them the variable-length prefix
codes 0, 10, 111, 1101, and 1100. The string of symbols a2a1a3a5a4 is compressed by
this code to the string B = 10|0|111|1100|1101. Reversing each codeword produces
B′ = 01|0|111|0011|1011. The longest codeword is four bits long, so we select L = 4.

3.5 Bidirectional Codes 167

We append four zeros to B and prepend four zeros to B′. Exclusive-ORing the strings
yields

B = 1001 1111 0011 010000
B′ = 0000 0101 1100 111011
C = 1001 1010 1111 101011

Decoding is done in the following steps:
1. XOR the first L bits of C and B′. This results in 1001⊕ 0000 = 1001→ a2a11.

This step decodes the first two symbols and leaves a “remainder” of 1 for the next step.
2. A total of three bits were decoded in the previous step, so the current step XORs

the next three bits of C and B′. This results in 101 ⊕ 010 = 111. Prepending the
remainder from the previous step yields 1111, which is decoded to a3 and a remainder
of 1.

3. A total of three bits were decoded in the previous step, so the current step XORs
the next three bits of C and B′, which results in 011 ⊕ 111 = 100. Prepending the
remainder from the previous step yields 1100 which is decoded to a5 with no remainder.

4. Four bits were decoded in the previous step, so the current step XORs the next
four bits of C and B′, which results in 1110⊕ 0011 = 1101, which is decoded to a4.

5. Four bits were decoded in the previous step, so the current step XORs the next
four bits of C and B′, which results in 1011⊕1011 = 0000. This indicates the successful
end of the decoding procedure.

If any data becomes corrupted, the last step will produce something other than L
zeros, indicating unsuccessful decoding.

Decoding in the reverse direction is identical, except that C is fed to the decoder
from end to start (from right to left) to produce substrings of B, which are then decoded
and also reversed (to become codewords of B′) and sent to the XOR. The first step XORs
the reverse of the last four bits of C with the the reverse of the last four bits of B (the
four zeros) to produce 1101, which is decoded as a4, reversed, and sent to the XOR.

The only overhead is the extra L bits, but L is normally a small number. Figure 3.16
shows the encoder and decoder of this method.

forward

bitstream B

B

C

B’

B’

offset L bits

data symbols

codeword

VL encoder

codeword
length

reverser

+

decodable
forward

bitstream B

B
C

B’

B’

offset L bits

data symbols

codeword

VL encoder

codeword
length

reverser

+

decodable

Encoder
Decoder

Figure 3.16: XOR-Based Encoding and Decoding.

168 3. Robust Codes

3.6 Symmetric Codes
A symmetric code is one where every codeword is symmetric. Such a codeword looks
the same when read in either direction, which is why symmetric codes are a special case
of reversible codes. We can expect a symmetric code to feature higher average length
compared with other codes, because the requirement of symmetry restricts the number
of available bit patterns of any given length.

The material presented here describes one way of selecting a set of symmetric code-
words. It is based on [Tsai and Wu 01b], which is an extension of [Takishima et al. 95].
The method starts from a variable-length prefix code, a set of prefix codewords of various
lengths, and replaces the codewords with symmetric bit patterns that have the same or
similar lengths and also satisfy the prefix property. Figure 3.17 is a good starting point.
It shows a complete binary tree with four levels. The symmetric bit patterns at each
level are underlined (as an aside, it can be proved by induction that there are 2�(i+1)/2�

such patterns on level i) and it is clear that, even though the number of symmetric
patterns is limited, every path from the root to a leaf passes through several such pat-
terns. It is also clear from the figure that any bit pattern is the prefix of all the patterns
below it on the same path. Thus, for example, selecting the pattern 00 implies that we
cannot later select any of the symmetric patterns 000, 0000, or any other symmetric
pattern below them on the same path. Selecting the 3-bit symmetric pattern 010, on
the other hand, does not restrict the choice of 4-bit symmetric patterns. (It will restrict
the choice of longer patterns, such as 01010 or 010010, but we are more interested in
short patterns.) Thus, a clever algorithm is needed, to select those symmetric patterns
at any level that will maximize the number of available symmetric patterns on the levels
immediately below them.

0000

000

00

0 1

2

3

1

01 10 11

001 010 011 100 101 110 111

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Level

Figure 3.17: A 4-Level Full Binary Tree.

The analysis presented in [Tsai and Wu 01b] proposes the following procedure. Scan
the complete binary tree level by level, locating the symmetric bit patterns on each level
and ordering them in a special way as shown below. The ordered patterns are then used
one by one to replace the original prefix codewords. However, if a symmetric pattern P
violates the prefix property (i.e., if a previously-assigned pattern is a prefix of P), then
P should be dropped.

To order the symmetric patterns of a level, go through the following steps:
1. Ignore the leftmost bit of the pattern.

3.6 Symmetric Codes 169

2. Examine the remaining bits and determine the maximum number M of least-
significant bits that are still symmetric (the maximum number of symmetric bit suffixes).

Table 3.18 lists the orders of the symmetric patterns on levels 3 through 6 of the
complete binary tree. In this table, M stands for the maximum number of symmetric bit
suffixes and CW is a symmetric pattern. For example, the 5-bit pattern 01110 has M = 1
because when we ignore its leftmost bit, the remaining four bits 1110 are asymmetric
(only the rightmost bit is symmetric). On the other hand, pattern 10101 has M = 3
because the three rightmost bits of 0101 are symmetric.

The symmetric bit patterns on each level should be selected and assigned in the
order shown in the table (order of increasing M). Thus, if we need 3-bit symmetric
patterns, we should first select 010 and 101, and only then 000 and 111. Selecting them
in this order maximizes the number of available symmetric patterns on levels 4 and 5.

Level 3 Level 4 Level 5 Level 6
M CW M CW M CW M CW
1 010 1 0110 1 01110 1 011110
1 101 1 1001 1 10001 1 100001
2 000 3 0000 2 00100 2 001100
2 111 3 1111 2 11011 2 110011

3 01010 3 010010
3 10101 3 101101
4 00000 5 000000
4 11111 5 111111

Table 3.18: Symmetric Codewords on Levels 3 Through
6, Ordered by Symmetric Bit Suffixes.

The following, incomplete, example illustrates the operation of this interesting al-
gorithm. Figure 3.19 shows a Huffman code for the 26 letters of the English alphabet
(the individual probabilities of the letters appear in Figure 1.19). The first Huffman
codeword is 000. It happens to be symmetric, but Table 3.18 tells us to replace it with
010. It is immediately clear that this is a good choice (as would have been the choice
of 101), because Figure 3.17 shows that the path that leads down from 010 to level 4
passes through patterns 0100 and 0101 which are not symmetric. Thus, the choice of
010 does not restrict the future choice of 4-bit symmetric codewords.

Figure 3.19 requires six 4-bit symmetric codewords, but there are only four such
patterns. They are 0110, 1001, 0000, and 1111, selected in increasing number of sym-
metric bit suffixes. Pattern 010 is not a prefix of any of them, so they are assigned as the
new, symmetric codewords of T, A, O, and N. The remaining two symmetric codewords
(of R and I) on this level will have to be longer (five bits each). Figure 3.19 requires
14 5-bit symmetric codewords (and two more, for R and I, are still needed), but there
are only eight symmetric 5-bit patterns. Two of them cannot be used because of prefix
violation. Pattern 010 is a prefix of 01010 and pattern 0000 is a prefix of 00000. The
remaining six 5-bit codewords of Table 3.18 are selected and assigned to the letters R
through L, while the letters C through V will have to be assigned longer symmetric
codewords.

170 3. Robust Codes

00
0

 0

01
0

 0

01
1

 0

10
0

01
01

01
10

01
11

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

00
11

11
01

11
11

10
11

11
11

0
11

11
11

1

E T A O N R I H S D L C U M F P Y B W G V J K X Q Z

Figure 3.19: A Huffman Code for the 26-Letter Alphabet.

It seems that the symmetric codewords are longer on average than the original
Huffman codewords, and this is true in general, because the number of available sym-
metric codewords of any given length is limited. However, as we go down the tree to
longer and longer codewords, the situation improves, because every other level in the
complete binary tree doubles the number of available symmetric codewords. Reference
[Tsai and Wu 01b] lists Huffman codes and symmetric codes for the 26 letters with
average lengths of 4.156 and 4.61 bits per letter, respectively.

The special ordering rules above seem arbitrary, but are not difficult to understand
intuitively. As an example, we examine the eight symmetric 6-bit patterns. The two
patterns of M = 5 become prefixes of patterns at level 7 simply by appending a 0 or
a 1. These patterns should therefore be the last ones to be used because they restrict
the number of available 7-bit symmetric patterns. The two patterns for M = 3 are
better, because they are not the prefixes of any 7-bit or 8-bit symmetric patterns. It is
obvious that appending one or two bits to 010010 or 101101 cannot result in a symmetric
pattern. Thus, these two patterns are prefixes of 9-bit (or longer) symmetric patterns.
When we examine the two patterns for M = 2, the situation is even better. Appending
one, two, or even three bits to 100001 or 001100 cannot result in a symmetric pattern.
These patterns are the prefixes of 10-bit (or longer) patterns. Similarly, the two 6-bit
patterns for M = 1 are the best, because their large asymmetry implies that they can
only be prefixes of 11-bit (or longer) patterns. Selecting these two patterns does not
restrict the number of symmetric 7-, 8-, 9-, or 10-bit patterns.

3.7 VLEC Codes
The simplest approach to robust variable-length codes is to add a parity bit to each
codeword. This approach combines compression (source coding) and reliability (channel
coding), but keeps the two separate. The two aims are contradictory because the former
removes redundancy while the latter adds redundancy. However, any approach to robust
compressed data must necessarily reduce compression efficiency. This simple approach
has an obvious advantage; it makes it easy to respond to statistical changes in both

3.7 VLEC Codes 171

the source and the channel. If it turns out that the channel is noisy, several parity bits
may be appended to each codeword, but the codewords themselves do not have to be
modified. If it turns out that certain data symbols occur with higher probability than
originally thought, their codewords can be replaced with shorter ones without having to
modify the error-control scheme.

A different approach to the same problem is to construct a set of variable-length
codewords that are sufficiently distant from one another (distant in the sense of Hamming
distance). A set of such codewords can be called a variable-length error-correcting
(VLEC) code. The downside of this approach is that any changes in source or channel
statistics requires a new set of codewords, but the hope is that this approach may result
in better overall compression. This approach may be justified if it meets the following
two goals:

1. The average length of the codewords turns out to be shorter than the average
length of the codewords with parity bits of the previous approach.

2. A decoding algorithm is found that can exploit the large distance between
variable-length codewords to detect and even correct errors. Even better, such an algo-
rithm should be able to recover synchronization in cases where bits get corrupted in the
communications channel.

Several attempts to develop such codes are described here.

Alpha-Prompt Codes. The main idea of this technique is to associate each
codeword c with a set α(c) of bit patterns of the same length that are at certain Hamming
distances from c. If codeword c is transmitted and gets corrupted to c′, the decoder
checks the entire set α(c) and selects the pattern nearest c′. The problem is that the
decoder doesn’t know the length of the next codeword, which is why a practical method
based on this technique should construct the sets α(c) in a special way.

We assume that there are s1 codewords of length L1, s2 codewords of length L2,
and so on, up to length m. The set of all the codewords c and all the bit patterns in the
individual sets α(c) is constructed as a prefix code (i.e., it satisfies the prefix property
and is therefore instantaneous). The decoder starts by reading the next L1 bits from the
input. Let’s denote this value by t. If t is a valid codeword c in s1, then t is decoded to
c. Otherwise, the decoder checks all the leftmost L1 bits of all the patterns that are L1
bits or longer and compares t to each of them. If t is identical to a pattern in set α(ci),
then t is decoded to ci. Otherwise, the decoder again goes over the leftmost L1 bits of
all the patterns that are L1 bits or longer and selects the one whose distance from t is
minimal. If that pattern is a valid codeword, then t is decoded to it. Otherwise, the
decoder reads a few more bits, for a total of L2 bits, and repeats this process for the
first L2 bits of all the patterns that are L2 bits long or longer.

This complex algorithm (proposed by [Buttigieg 95]) always decodes the input to
some codeword if the set of all the codewords c and all the bit patterns in the individual
sets α(c) is a prefix code.

VLEC Tree. We assume that our code has s1 codewords of length L1, s2 codewords
of length L2, and so on, up to length m. The total number of codewords ci is s. As an
example, consider the code a = 000, b = 0110, and c = 1011 (one 3-bit and two 4-bit
codewords).

172 3. Robust Codes

The VLEC tree method attempts to correct errors by looking at an entire trans-
mission and mapping it to a special VLEC tree. Each node in this tree is connected
to s other nodes on lower levels with edges s that are labeled with the codewords ci.
Figure 3.20 illustrates an example with the code above. Each path of e edges from the
root to level b is therefore associated with a different string of e codewords whose total
length is b bits. Thus, node [1] in the figure corresponds to string cba = 1011|0110|000
(11 bits) and node [2] corresponds to the 12-bit string bcc = 0110|1011|1011. There are
many possible strings of codewords, but it is also clear that the tree grows exponentially
and quickly becomes very wide (the tree in the figure corresponds to strings of up to 12
bits).

12 [1] [2]
11
10
9
8
7
6

4
3

0

101
1 0110

000

Figure 3.20: A VLEC Tree.

Assuming that the only transmission errors are corrupted bits (i.e., no bits are
inserted to or deleted from an encoded string by noise in the communications channel),
if an encoded string of b bits is sent, the decoder will receive b bits, some possibly bad.
Any b-bit string corresponds to a node on level b, so error-correcting is reduced to the
problem of selecting one of the paths that end on that level. The obvious solution is to
measure the Hamming distances between the received b-bit string and all the paths that
end on level b and select the path with the minimum distance. This simple solution,
however, is impractical for the following reasons:

Data symbols (and therefore their codewords) have different probabilities, which
is why not all b-bit paths are equally likely. If symbol a is very probable, then paths
with many occurrences of a are more likely and should be given more weight. Assume
that symbol a in our example has probability 0.5, while symbols b and c occur with
probability 0.25 each. A probable path such as aabaca should be assigned the weight
4 × 0.5 + 2 × 0.25 = 2.5, while a less probable path, such as bbccca should be assigned
the smaller weight 5 × 0.25 + 0.5 = 1.75. When the decoder receives a b-bit string S,
it should (1) compute the Hamming distance between S and all the b-bit paths P , (2)
divide each distance by the weight of the path, and (3) select the path with the smallest
weighted distance. Thus, if two paths with weights 2.5 and 1.75 are at a Hamming
distance of 2 from S, the decoder computes 2/2.5 = 0.8 and 2/1.75 = 1.14 and selects
the former path.

A VLEC tree for even a modest-size alphabet grows too wide very quickly and
becomes unmanageable for even short messages. Thus, an algorithm is needed for the

3.7 VLEC Codes 173

decoder to decode an encoded message in short segments. In cases where many errors
are rare, a possible approach may be to read the encoded string and encode it normally
until the decoder loses synchronization (say, at point A). The decoder then skips bits
until it regains synchronization (at point B), and then employs the VLEC tree to the
input from A to B.

VLEC Trellis. The second point above, of the tree getting too big very quickly,
can be overcome by replacing the tree with a trellis structure, as shown in Figure 3.21.

S0 S4

S6

S8

S9

S12 S16

S3 S7 S11 S15 S19

S10 S14 S18

S13 S17

a

b b b b

b

c c c c

c
c

c c c c

c

c c

c c

cc c

c

c c

c c

b b b

b b

b b b

a
a

Figure 3.21: A VLEC Trellis.

The trellis is constructed as follows:
1. Start with state S0.
2. From each state, construct m edges to other states, where each edge corresponds

to one of the m codeword lengths Li. Thus, state Si will be connected to states Si+L1 ,
Si+L2 , up to Si+Lm . If any of these states does not exist, it is created when needed.

A trellis is a structure, usually made from interwoven pieces of wood, bamboo or metal
that supports many types of climbing plant such as sweet peas, grapevines and ivy.
—wikipedia.com

Notice that the states are arranged in Figure 3.21 in stages, where each stage is a
vertical set of states. A comparison of Figures 3.20 and 3.21 shows their similarities,
but also shows the important difference between them. Beyond a certain point (in our
example, beyond the third stage), the trellis stages stop growing in size regardless of
the length of the trellis. It is this difference that makes it possible to develop a reliable
decoding algorithm (a modified Viterbi algorithm, described on page 69 of [Buttigieg 95],
but not discussed here). An important feature of this algorithm is that it employs a
metric (a weight assigned to each trellis edge), and it is possible to define this metric in
a way that takes into account the different probabilities of the trellis edges.

174 3. Robust Codes

3.7.1 Constructing VLEC Codes
p Huffman Takishima Tsai Laković

E 0.14878 001 001 000 000
T 0.09351 110 110 111 111
A 0.08833 0000 0000 0101 0101
O 0.07245 0100 0100 1010 1010
R 0.06872 0110 1000 0010 0110
N 0.06498 1000 1010 1101 1001
H 0.05831 1010 0101 0100 0011
I 0.05644 1110 11100 1011 1100
S 0.05537 0101 01100 0110 00100
D 0.04376 00010 00010 11001 11011
L 0.04124 10110 10010 10011 01110
U 0.02762 10010 01111 01110 10001
P 0.02575 11110 10111 10001 010010
F 0.02455 01111 11111 001100 101101
M 0.02361 10111 111101 011110 100001
C 0.02081 11111 101101 100001 011110
W 0.01868 000111 000111 1001001 001011
G 0.01521 011100 011101 0011100 110100
Y 0.01521 100110 100111 1100011 0100010
B 0.01267 011101 1001101 0111110 1011101
V 0.01160 100111 01110011 1000001 0100010
K 0.00867 0001100 00011011 00111100 1101011
X 0.00146 00011011 000110011 11000011 10111101
J 0.00080 000110101 0001101011 100101001 010000010
Q 0.00080 0001101001 00011010011 0011101001 0100000010
Z 0.00053 0001101000 000110100011 1001011100 1011111101
Avg. length 4.15572 4.36068 4.30678 4.34534

Table 3.22: Huffman and Three RVLC Codes for the English Alphabet.

How can we construct an RVLC with a free distance greater than 1? One such
algorithm, proposed by [Laković and Villasenor 02] is an extension of an older algorithm
due to [Tsai and Wu 01a], which itself is based on the work of [Takishima et al. 95]. This
algorithm starts from a set of Huffman codes. It then goes over these codewords level
by level, from short to long codewords and replaces some of them with patterns taken
from a complete binary tree, similar to what is described in Section 3.6, making sure
that the prefix property is not violated while also ascertaining that the free distance of
all the codewords that have so far been examined does not drop below the target free
distance. If a certain pattern from the binary tree results in a free distance that is too
small, that pattern is skipped.

Table 3.22 (after [Laković and Villasenor 02], see also the very similar Table 3.13)
lists a set of Huffman codes for the 26 letters of the English alphabet together with
three RVLC codes for the same symbols. The last of these codes has a free distance of
2. These codes were constructed by algorithms proposed by [Takishima et al. 95], [Tsai
and Wu 01a], and [Laković and Villasenor 02].

3.7 VLEC Codes 175

Summary. Errors are a fact of life, which is why any practical method for cod-
ing, storing, or transmitting data should consider the use of robust codes. The vari-
ous variable-length codes described in this chapter are robust, which makes them ideal
choices for applications where both data compression and data reliability are needed.

Good programmers naturally write neat code when left
to their own devices. But they also have an array of battle

tactics to help write robust code on the front line.

—Pete Goodliffe, Code Craft: The Practice of Writing Excellent Code

Summary and Unification
The wide experience currently available with variable-length codes indicates that it is
easy to develop good variable-length codes for large integers. The Elias omega, the
ternary comma, and the punctured codes all do well in compressing large integers and
there is not much difference between them.

When the data is dominated by many small values, none of the variable-length
codes performs much better than others (although the gamma and omega codes seem to
perform a bit better in such cases). It is difficult (perhaps even impossible) to develop
a variable-length code that will consistently encode small integers with short codes.

The previous two paragraphs suggest that the omega code does well with both
small and large data values, but it doesn’t do as well in the intermediate range, where
it introduces new prefix elements (length groups). Thus, even this code is not ideal for
arbitrary data distributions.

Unification. Today (early 2007), after several decades of intensive research in the
area of variable-length codes, many codes have been conceived, developed, analyzed,
and applied in practical situations to compress various types of data. The main classes
of variable-length codes are listed in the Introduction, and it is obvious that they are
based on different approaches and different principles, and possess different properties.
Nevertheless, the human tendency to unify disparate entities is strong, and the next few
paragraphs describe an attempt to unify variable-length codes.

Some of the codes presented here constitute families that depend on a parameter
(or a small number of parameters). For each choice of the parameter, the family reduces
to a code whose members are codewords. Following is a list of these codes.

The Stout codes of Section 2.11, the Golomb code of Section 2.23, the Rice codes
(Section 2.24), the exponential Golomb codes (proposed by [Teuhola 78]), the start-step-
stop codes of Fiala and Greene (Section 2.2), the start/stop codes of Pigeon (Section 2.3),
the taboo codes of Section 2.15, the Capocelli code of Section 2.20.1, and the subexpo-
nential code of Howard and Vitter (Section 2.25).

The fact that many variable-length codes depend on a parameter and consist of
families suggests a way to unify them. The idea described here is due to Paul Howard
who, in [Howard 98], termed such codes unary prefix/suffix, or UP/S. The codewords of
a UP/S code are organized in sets Si such that the codewords of the first few integers

178 Summary and Unification

0, 1, 2 . . . are members of set S0, the following codewords are members of set S1, and so
on. Each set is completely filled up before the next set starts. A codeword consists of
two parts, prefix and suffix. The prefix is the set number Si in unary (i 1’s followed by
a 0) and the suffix is the position of the codeword in the set (encoded in different ways,
depending on the code). If a code satisfies this classification, then it can be described
by (1) the size of set i as a function of i and (2) the encoding method of the suffix. The
following are examples of UP/S codes:

1. The Rice code, where the parameter m is a power of 2 (m = 2k). Set Si consists
of all the integers n where �n/2k� equals i (see the column labeled “No. of ones” in
Table 2.50).

2. The start-step-stop codes. Start with i = 0 and increment i by 1 to generate sets
Si. For each i, compute a = start + i× step and construct all the a-bit integers. There
are 2a such numbers and they become the suffixes of set Si.

3. The exponential Golomb codes depend on a choice of a nonnegative integer pa-
rameter s. The discussion on page 165 mentions that the length of a codeword increases
by 2 each time 1 + n/2s is a power of 2. This naturally partitions the code into sets Si,
each including codewords for the integers from 2i to 2i+1 − 1.

There is a surprising variety of codes
(and some varieties of surprising codes).

—Peter Fenwick

Bibliography

Acharya, Tinku and Joseph F. JáJá (1995) “Enhancing LZW Coding Using a Variable-
Length Binary Encoding,” Tech Report TR 1995-70, Institute for Systems Research,
University of Maryland.

Acharya, Tinku and Joseph F. JáJá (1996) “An On-Line Variable Length Binary En-
coding of Text,” Information and Computer Science, 94:1–22.

Ahlswede, Rudolf, Te Sun Han, and Kingo Kobayashi (1997) “Universal Coding of
Integers and Unbounded Search Trees,” IEEE Transactions on Information Theory,
43(2):669–682.

amu (2006) is http://ifa.amu.edu.pl/˜kprzemek.

Anh, Vo Ngoc and Alistair Moffat (2005) “Inverted Index Compression Using Word-
Aligned Binary Codes,” Information Retrieval, 8:151–166.

Apostolico, Alberto and A. S. Fraenkel (1987) “Robust Transmission of Unbounded
Strings Using Fibonacci Representations,” IEEE Transactions on Information Theory,
33(2):238–245, March.

Bauer, Rainer and Joachim Hagenauer (2001) “On Variable-Length Codes for Iterative
Source/Channel-Decoding,” Proceedings of the IEEE Data Compression Conference,
2001, Snowbird, UT, pp. 273–282.

Bell, Timothy C., John G. Cleary, and Ian H. Witten (1990) Text Compression, Engle-
wood Cliffs, NJ, Prentice Hall.

Bentley, J. L. and A. C. Yao (1976) “An Almost Optimal Algorithm for Unbounded
Searching,” Information Processing Letters, 5(3):82–87.

Bass, Thomas A. (1992) Eudaemonic Pie, New York, Penguin Books.

Berger, T. and R. Yeung (1990) “Optimum ‘1’-Ended Binary Prefix Codes,” IEEE
Transactions on Information Theory, 36(6):1435–1441, November.

180 Bibliography

Berstel, Jean and Dominique Perrin (1985) Theory of Codes, Orlando, FL, Academic
Press.

Boldi, Paolo and Sebastiano Vigna (2004a), “The WebGraph Framework I: Compres-
sion Techniques,” in Proceedings of the 13th International World Wide Web Conference
(WWW 2004), pages 595–601, New York, ACM Press.

Boldi, Paolo and Sebastiano Vigna (2004b), “The WebGraph Framework II: Codes for
the World-Wide Web,” in Data Compression Conference, DCC 2004.

Boldi, Paolo and Sebastiano Vigna (2005), “Codes for the World-Wide Web,” Internet
Mathematics, 2(4):405–427.

Bookstein, Abraham and S. T. Klein (1993) “Is Huffman Coding Dead?” Proceedings of
the 16th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 80–87. Also published in Computing, 50(4):279–296, 1993,
and in Proceedings of the Data Compression Conference, 1993, Snowbird, UT. p. 464.

Burrows, Michael and D. J. Wheeler (1994) A Block-Sorting Lossless Data Compression
Algorithm, Digital Systems Research Center Report 124, Palo Alto, CA, May 10.

Buttigieg, Victor (1995a) Variable-Length Error-Correcting Codes, PhD thesis, Univer-
sity of Manchester.

Buttigieg, Victor and P. G. Farrell (1995b) “A Maximum A-Posteriori (MAP) Decoding
Algorithm For Variable-Length Error-Correcting Codes,” Codes and Cyphers: Cryptog-
raphy and Coding IV, Essex, England, Institute of Mathematics and Its Applications,
pp. 103–119.

Capocelli, Renato (1989) “Comments and Additions to ‘Robust Transmission of Un-
bounded Strings Using Fibonacci Representations’,” IEEE Transactions on Information
Theory, 35(1):191–193, January.

Capocelli, R. and A. De Santis (1992) “On The Construction of Statistically Synchro-
nizable Codes,” IEEE Transactions on Information Theory, 38(2):407–414, March.

Capocelli, R. and A. De Santis (1994) “Binary Prefix Codes Ending in a ‘1’,” IEEE
Transactions on Information Theory, 40(4):1296–1302, July.

Chaitin, Gregory J. (1966) “On the Lengths of Programs for Computing Finite Binary
Sequences,” Journal of the ACM, 13(4):547–569, October.

Choueka Y., Shmuel T. Klein, and Y. Perl (1985) “Efficient Variants of Huffman Codes
in High Level Languages,” Proceedings of the 8th ACM-SIGIR Conference, Montreal,
pp. 122–130.

codethatword (2007) is http://www.codethatword.com/.

dartmouth (2006) is
http://www.math.dartmouth.edu/˜euler/correspondence/letters/OO0765.pdf.

Davisson, I. D. (1966) “Comments on ‘Sequence Time Coding for Data Compression’,”
Proceedings of the IEEE, 54:2010, December.

Bibliography 181

Elias, P. (1975) “Universal Codeword Sets and Representations of the Integers,” IEEE
Transactions on Information Theory, 21(2):194–203, March.

Even, S. and M. Rodeh (1978) “Economical Encoding of Commas Between Strings,”
Communications of the ACM, 21(4):315–317, April.

Fano, R. M. (1949) “The Transmission of Information,” Research Laboratory for Elec-
tronics, MIT, Tech Rep. No. 65.

Fenwick, Peter (1996) “Punctured Elias Codes for Variable-Length Coding of the Inte-
gers,” Technical Report 137, Department of Computer Science, University of Auckland,
December. This is also available online at
www.firstpr.com.au/audiocomp/lossless/TechRep137.pdf.

Fenwick, P. (2002), “Variable-Length Integer Codes Based on the Goldbach Conjecture,
and Other Additive Codes,” IEEE Transactions on Information Theory, 48(8):2412–
2417, August.

Ferguson, T. J. and J. H. Rabinowitz (1984) “Self-Synchronizing Huffman codes,” IEEE
Transactions on Information Theory, 30(4):687–693, July.

Fiala, E. R. and D. H. Greene (1989), “Data Compression with Finite Windows,” Com-
munications of the ACM, 32(4):490–505.

firstpr (2006) is http://www.firstpr.com.au/audiocomp/lossless/#rice.

Fraenkel, A. S. and Shmuel T. Klein (1985) “Robust Universal Complete Codes as
Alternatives to Huffman Codes,” Tech. Report CS85-16, Dept. of Applied Mathematics,
Weizmann Institute of Science, October.

Fraenkel, Aviezri S. and Shmuel T. Klein (1990) “Bidirectional Huffman Coding,” The
Computer Journal, 33:296–307.

Fraenkel, Aviezri S. and Shmuel T. Klein (1996) “Robust Universal Complete Codes for
Transmission and Compression,” Discrete Applied Mathematics, 64(1):31–55, January.

Freeman, G. H. (1991) “Asymptotic Convergence of Dual-Tree Entropy Codes,” Pro-
ceedings of the Data Compression Conference (DCC ’91), pp. 208–217.

Freeman, G. H. (1993) “Divergence and the Construction of Variable-to-Variable-Length
Lossless Codes by Source-Word Extensions,” Proceedings of the Data Compression Con-
ference (DCC ’93), pp. 79–88.

Gallager, Robert G. (1978) “Variations on a Theme by Huffman,” IEEE Transactions
on Information Theory, 24(6):668–674, November.

Gallager, Robert G., and David C. van Voorhis (1975) “Optimal Source Codes for Geo-
metrically Distributed Integer Alphabets,” IEEE Transactions on Information Theory,
21(3):228–230, March.

Gemstar (2006) is http://www.gemstartvguide.com.

Gilbert, E. N. and E. F. Moore (1959) “Variable Length Binary Encodings,” Bell System
Technical Journal, 38:933–967.

182 Bibliography

Girod, Bernd (1999) “Bidirectionally Decodable Streams of Prefix Code-Words,” IEEE
Communications Letters, 3(8):245–247, August.

Glusker, Mark, David M. Hogan, and Pamela Vass (2005) “The Ternary Calculating
Machine of Thomas Fowler,” IEEE Annals of the History of Computing, 27(3):4–22,
July.

Golomb, Solomon W. (1966) “Run-Length Encodings,” IEEE Transactions on Informa-
tion Theory, 12(3):399–401.

Grimm, R. E. (1973) “The Autobiography of Leonardo Pisano,” Fibonacci Quarterly,
11(1):99–104, February.

Hirschberg, D. and D. Lelewer (1990) “Efficient Decoding of Prefix Codes,” Communi-
cations of the ACM, 33(4):449–459.

Howard, Paul G. (1998) “Interleaving Entropy Codes,” Proceedings Compression and
Complexity of Sequences 1997, Salerno, Italy, pp. 45–55, June.

Howard, Paul G. and J. S. Vitter (1994) “Fast Progressive Lossless Image Compression,”
Proceedings of the Image and Video Compression Conference, IS&T/SPIE 1994 Sym-
posium on Electronic Imaging: Science & Technology, 2186, San Jose, CA, pp. 98–109,
February.

Huffman, David (1952) “A Method for the Construction of Minimum Redundancy
Codes,” Proceedings of the IRE, 40(9):1098–1101.

Karp, R. S. (1961) “Minimum-Redundancy Coding for the Discrete Noiseless Channel,”
Transactions of the IRE, 7:27–38.

Kiely, A. (2004) “Selecting the Golomb Parameter in Rice Coding,” IPN (Interplanetary
Network) Progress Report, 42–159:1–8, November 15.

Kraft, L. G. (1949) A Device for Quantizing, Grouping, and Coding Amplitude Modulated
Pulses, Master’s Thesis, Department of Electrical Engineering, MIT, Cambridge, MA.

Laković, Ksenija and John Villasenor (2002) “On Design of Error-Correcting Reversible
Variable Length Codes,” IEEE Communications Letters, 6(8):337–339, August.

Laković, Ksenija and John Villasenor (2003) “An Algorithm for Construction of Efficient
Fix-Free Codes,” IEEE Communications Letters, 7(8):391–393, August.

Lam, Wai-Man and Sanjeev R. Kulkarni (1996) “Extended Synchronizing Codewords
for Binary Prefix Codes,” IEEE Transactions on Information Theory, 42(3):984–987,
May.

Lawrence, John C. (1977) “A New Universal Coding Scheme for the Binary Memoryless
Source,” IEEE Transactions on Information Theory, 23(4):466–472, July.

LBE (2007) is http://in.geocities.com/iamthebiggestone/how_lbe_works.htm.

Levenstein (2006) is http://en.wikipedia.org/wiki/Levenstein_coding.

Lynch, T. J. (1966) “Sequence Time Coding for Data Compression,” Proceedings of the
IEEE, 54:1490–1491, October.

Bibliography 183

Mahoney, Michael S. (1990) “Goldbach’s Biography” in Charles Coulston Gillispie Dic-
tionary of Scientific Biography, New York, NY, Scribner’s, 14 vols. 1970–1990.

McMillan, Brockway (1956) “Two Inequalities Implied by Unique Decipherability,”
IEEE Transactions on Information Theory, 2(4):115–116, December.

morse-tape (2006) is http://memory.loc.gov/mss/mmorse/071/071009/0001d.jpg.

pass (2006) is http://pass.maths.org/issue2/xfile/.

Pigeon, Steven (2001a) “Start/Stop Codes,” Proceedings of the Data Compression Con-
ference (DCC ’01), p. 511. Also available at
http://www.stevenpigeon.org/Publications/publications/ssc_full.pdf.

Pigeon, Steven (2001b) Contributions to Data Compression, PhD Thesis, University of
Montreal (in French). Available from
http://www.stevenpigeon.org/Publications/publications/phd.pdf. The part on
taboo codes is “Taboo Codes, New Classes of Universal Codes,” and is also available at
www.iro.umontreal.ca/˜brassard/SEMINAIRES/taboo.ps. A new version has been
submitted to SIAM Journal of Computing.

Randall, Keith, Raymie Stata, Rajiv Wickremesinghe, and Janet L. Wiener (2001) “The
LINK Database: Fast Access to Graphs of the Web.” Research Report 175, Compaq
Systems Research Center, Palo Alto, CA.

Rice, Robert F. (1979) “Some Practical Universal Noiseless Coding Techniques,” Jet
Propulsion Laboratory, JPL Publication 79-22, Pasadena, CA, March.

Rice, Robert F. (1991) “Some Practical Universal Noiseless Coding Techniques—Part
III. Module PSI14.K,” Jet Propulsion Laboratory, JPL Publication 91-3, Pasadena, CA,
November.

Robinson, Tony (1994) “Simple Lossless and Near-Lossless Waveform Compression,”
Technical Report CUED/F-INFENG/TR.156, Cambridge University, December. Avail-
able at http://citeseer.nj.nec.com/robinson94shorten.html.

Rudner, B. (1971) “Construction of Minimum-Redundancy Codes with an Optimum
Synchronization Property,” IEEE Transactions on Information Theory, 17(4):478–487,
July.

“So few?” asked Frost. “Many of them contained bib-
liographies of books I have not yet scanned.” “Then
those books no longer exist,” said Mordel. “It is only
by accident that my master succeeded in preserving as
many as there are.”

—Roger Zelazny, For a Breath I Tarry (1966)

Salomon, D. (2003) Data Privacy and Security, New York, Springer Verlag.

Salomon, D. (2006) Data Compression: The Complete Reference, 4th edition, London,
Springer Verlag.

184 Bibliography

Schalkwijk, J. Pieter M. “An Algorithm for Source Coding,” IEEE Transactions on
Information Theory, 18(3):395–399, May.

seul.org (2006) is
http://f-cpu.seul.org/whygee/phasing-in_codes/PhasingInCodes.nb.

Shannon, Claude E. (1948), “A Mathematical Theory of Communication,” Bell System
Technical Journal, 27:379–423 and 623–656, July and October,

Sieminski, A. (1988) “Fast Decoding of the Huffman Codes,” Information Processing
Letters, 26(5):237–241.

Sloane, Neil J. A. (2006) “The On-Line Encyclopedia of Integer Sequences,” at
www.research.att.com/˜njas/sequences/.

Stout, Quentin F. (1980) “Improved Prefix Encodings of the Natural Numbers,” IEEE
Transactions on Information Theory, 26(5):607–609, September.

T-REC-h (2006) is http://www.itu.int/rec/T-REC-h.

Takishima, Y., M. Wada, and H. Murakami, (1995) “Reversible Variable-Length Codes,”
IEEE Transactions on Communications, 43(2,3,4):158–162, Feb./Mar./Apr.

Teuhola, J. (1978) “A Compression Method for Clustered Bit-Vectors,” Information
Processing Letters, 7:308–311, October.

Tjalkens, T. and Frans M. Willems (1992) “A Universal Variable-to-Fixed Length Source
Code Based on Lawrence’s Algorithm,” IEEE Transactions on Information Theory,
38(2):247–253, March.

Tsai, C. W. and J. L. Wu (2001a) “On Constructing the Huffman-Code Based Re-
versible Variable Length Codes,” IEEE Transactions on Communications, 49(9):1506–
1509, September.

Tsai, Chien-Wu and Ja-Ling Wu (2001b) “Modified Symmetrical Reversible Variable-
Length Code and its Theoretical Bounds,” IEEE Transactions on Information Theory,
47(6):2543–2548, September.

Tunstall, B. P. (1967) “Synthesis of Noiseless Compression Codes,” PhD dissertation,
Georgia Institute of Technology, Atlanta, GA, September.

uklinux (2007) is http://www.bckelk.uklinux.net/menu.html.

Outside of a dog, a book is man’s best friend. Inside of
a dog it’s too dark to read.

—Groucho Marx

Ulam (2006) is Weisstein, Eric W. “Ulam Sequence.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/UlamSequence.html.

utm (2006) is http://primes.utm.edu/notes/conjectures/.

Wang, Muzhong (1988) “Almost Asymptotically Optimal Flag Encoding of the Inte-
gers,” IEEE Transactions on Information Theory, 34(2):324–326, March.

Bibliography 185

Wen, Jiangtao and John D. Villasenor (1998) “Reversible Variable Length Codes for
Efficient and Robust Image and Video Coding,” Data Compression Conference, pp. 471–
480, Snowbird, UT, March–April.

Yamamoto, Hirosuke (2000) “A New Recursive Universal Code of the Positive Integers,”
IEEE Transactions on Information Theory, 46(2):717–723, March.

Yamamoto, Hirosuke and Hiroshi Ochi (1991) “A New Asymptotically Optimal Code
for the Positive Integers,” IEEE Transactions on Information Theory, 37(5):1420–1429,
September.

Zeckendorf, E. (1972) “Représentation des Nombres Naturels par Une Somme de Nom-
bres de Fibonacci ou de Nombres de Lucas,” Bull. Soc. Roy. Sci. Liège, 41:179–182.

Zeilberger, D. (1993) “Theorems for a Price: Tomorrow’s Semi-Rigorous Mathemati-
cal Culture,” Notices of the American Mathematical Society, 40(8):978–981, October.
Reprinted in Mathematical Intelligencer, 16(4):11–14 (Fall 1994).

Zipf’s Law (2007) is http://en.wikipedia.org/wiki/Zipf’s_law

Ziv, Jacob and A. Lempel (1977) “A Universal Algorithm for Sequential Data Compres-
sion,” IEEE Transactions on Information Theory, 23(3):337–343.

Ziv, Jacob and A. Lempel (1978) “Compression of Individual Sequences via Variable-
Rate Coding,” IEEE Transactions on Information Theory, 24(5):530–536.

Bibliography, in its most general sense is the study and
description of books. It can be divided into enumerative or

systematic bibliography, which results in an overview of
publications in a particular category, and analytical or

critical bibliography, which studies the production of books.

http://en.wikipedia.org/wiki/Bibliography

Index
The index caters to those who have already read the book and want to locate a familiar
item, as well as to those new to the book who are looking for a particular topic. I have
included any terms that may occur to a reader interested in any of the topics discussed
in the book (even topics that are just mentioned in passing). As a result, even a quick
glance over the index gives the reader an idea of the terms and topics included in the
book. Any errors and omissions brought to my attention are welcome. They will be
added to the errata list and will be included in any future editions.

1-ending codes, 139–141

adaptive (dynamic) Huffman algorithm, 4,
10

additive codes, 6, 126–129
affix codes, 162
alphabet (definition of), 6, 13
Ambrose, Stephen Edward (1936–2002), 82
anti-Fibonacci numbers, 103, 116
Apostolico, Alberto, 116
Aquinas, Thomas (saint), 160
ASCII code, 10

Baeyer, Hans Christian von (1938–), 39
Baker, Russell (1925–), 11
balanced binary tree, 61
Beckett, Samuel (Barclay) (1906–1989), 30
Bentley, Jon Louis, 98
Berger, Toby, 139
Bernoulli, Nicolaus I (1687–1759), 121
beta code, 38, 69, 74
bi-level image, 47
biased gamma code, 137
bidirectional codes, 5, 6, 159–170

bijection, 70
definition of, ix

binomial coefficient, 23
biprefix codes, see affix codes
Blelloch, Guy, 46
block codes, 10
block-to-block codes, 1–2
block-to-variable codes, 2–3, 5
Boldi, Paolo, 92
Boldi–Vigna code, 5, 91–94
Braille, Louis (1809–1852), ix
Burrows–Wheeler transform, 82
byte coding, 40

C1 prefix code, 83
C2 prefix code, 83
C3 prefix code, 83
C4 prefix code, 83

identical to omega code, 83
canonical Huffman codes, 59–63
Capocelli, Renato Maria (1940–1992), 108,

119, 139, 177
Chaitin, Gregory J. (1947–), 5
channel coding, 14, 143

188 Index

check bits, 144–145
Clarke, Sir Arthur Charles (1917–), 141
codes

definition of, 9
ending with 1, 139–141
Hamming distance, 146–148
parity bits, 145–146
variable-length, 51

unambiguous, 19
comma codes, 12
complete codes, 13, 116
compressed stream (definition of), 7
concordance (definition of), 160
correlations between pixels, 47
cryptography, 143

data compression (source coding), 10
data reliability, 150–159
De Santis, Alfredo, 139
decoding, 10
delta code (Elias), 75–77, 92

and search trees, 99
deque (data structure), 161
dequeue, see deque
dictionary-based (LZ) compression methods,

3–4
dual tree coding, 23, 49–51
duodecimal (number system), 111
dynamically-variable-flag-length (DVFL),

108

Elias codes, 5, 74–79
Elias, Peter (1923–2001), 38, 74, 75
Ellsworth, Annie (and Morse telegraph), vii
encoding, 10
entropy, 13–18, 20, 46
error-control codes, 143–149
error-correcting (VLEC) codes, 170–174
error-correcting codes, 143–149
error-detecting codes, 143–149
ESC, see extended synchronizing codeword
Euler, Leonhard (1707–1783), 120–122
Even, Shimon (1935–2004), 81
Even–Rodeh code, 5, 81

a special case of Stout R code, 89
exclusive OR (XOR), 166

exponential Golomb codes, 72, 134,
164–166, 177, 178

extended synchronizing codeword (ESC),
158–159

Fano, Robert Mario (1917–), 42
feasible codes, 139–141

as synchronous codes, 155
Fenwick, Peter M., 121, 124, 125, 178
Fibonacci code, 6, 112–115

generalized, 116–120
Fibonacci numbers, 1, 111

and height of Huffman trees, 58
and taboo codes, 100, 103

Fibonacci, Leonardo Pisano (1170–1250), x,
112, 120

finite-state machines, 49
fixed-to-variable codes, 21
flag codes

Wang, 5, 105–106
Yamamoto, 6, 106–110

Fowler, Thomas (1777–1843), 87
Fraenkel, Aviezri Siegmund (1929–), 113,

116
free distance (in VLEC codes), 149–150
Freeman, George H., 49
frequencies of symbols, 51

Gallager, Robert Gray (1931–), 43, 63, 134
gamma code (Elias), 74–75, 92, 137

and Goldbach G1, 122
and punctured codes, 82
and search trees, 99
as a start-step-stop code, 72
biased, 137
its length, 125

gapless source, 154
general unary codes, 71–74
generalized exponential Golomb codes, 165
generalized Fibonacci codes, 116–120
generalized Fibonacci numbers, 103
geometric distribution, 130
geometric sequence, 130
geometric series, 130
Ghengis Khan (≈1165–1207), vii
Goethe, Johann Wolfgang von (1743–1832),

89
Goldbach codes, 6, 111, 120–126

and unary codes, 121

Index 189

Goldbach conjecture, 120–122, 126
Goldbach, Christian (1690–1764), 120–122
golden ratio, 111, 112
Golomb code, 6, 129–136, 138, 163, 177

and JPEG-LS, 134
and RLE, 4, 134, 135
exponential, 164–166

Golomb, Solomon Wolf (1932–), 136
Golomb–Rice code, see Rice codes
Gordon, Charles, 18
Guedalla, Philip (1889–1944), x

Hamming distance, 144, 146–148
Hamming, Richard Wesley (1915–1998), 146
Hartley (information unit), 13
heap (data structure), 61
Howard, Paul Glor, 177
Huffman algorithm, 2, 10, 17, 131

combined with Tunstall, 49–51
Huffman codes, 5, 22, 70

and Rice codes, 136
resynchronizing, 156–159

Huffman coding, 42–67
canonical, 59–63
code size, 53–55
dead?, 63–67
decoding, 51–53
for images, 49
not unique, 43
number of codes, 55–56
synchronized?, 66
ternary, 56
2-symbol alphabet, 47
variance, 45

Huffman, David Albert (1925–1999), 42, 43

image (bi-level), 47
information theory, 13–18

algorithmic, 5
and increased redundancy, 144
basic theorem, 145

instantaneous codes, 12

Jessel, George (1824–1883), 74
JPEG (zigzag order), 87
JPEG-LS (and Golomb code), 134

Kipling, Joseph Rudyard (1865–1936), 55
Klein, Shmuel Tomi, 113

Knuth, Donald Ervin (1938–), 25, 79
Kraft–McMillan inequality, 13, 19–21

and Huffman codes, 46
Kublai Khan (1215–1294), vii
Kulawiec, Rich, 141
KWIC (key word In context), 160–161

Lang, Andrew (1844–1912), 60
Laplace distribution, 137
LBE, see location based encoding
Leibniz, Gottfried Wilhelm (1646–1716), 121
Lempel, Abraham (1936–), 3
Levenshtein, Vladimir Iosifovich (1935–), 80
Levenstein code, 5, 80
Linder, Doug, 161
Littlewood, John Edensor (1885–1977), 70
location based encoding (LBE), 87–88
log-star function, 96
logarithm (as the information function), 15
logarithmic ramp representations, 5
logarithmic-ramp code, see omega code

(Elias)
Luhn, Hans Peter (1896–1964), 160
LZ compression, see dictionary-based

methods
LZW algorithm (enhanced by recursive

phased-in codes, 37

Marx, Groucho (Julius Henry 1890–1977),
184

mean (in statistics), 131
median (in statistics), 131
Melville, Herman (1819–1891), v
minimal binary code, 93

and phased-in codes, 31
Morse code, viii–ix, 11

non-UD, 13
Morse, Samuel Finley Breese (1791–1872),

vii, 11
Motil, John Michael (1938–), 54
Motta, Giovanni (1965–), x

n-step Fibonacci numbers, 103, 111, 115
nat (information unit), 13
never-self-synchronizing codes, see affix

codes
Newton, Isaac (1643–1727), 23
nibble code, 40

190 Index

compared to zeta code, 93
number bases, 110–111

O’Brien, Katherine, 120
Ochi, Hiroshi, 106
omega code (Elias), 77–79, 94

and search trees, 99
and Stout R code, 89
identical to code C4, 83
its length, 125

P-code (pattern code), 113, 116
parity bits, 145–146
parse tree, 23
Pascal triangle, 1, 23–28
Pascal, Blaise (1623–1662), 24, 129
Penrose, Roger (1931–), 7
phased-in codes, 5, 31–37, 93

recursive, 5, 37–39
suffix, 32

phonetic alphabet, 147
Pigeon, Patrick Steven, 37, 38, 73, 74, 100,

102, 177, 2001
pod code, 137
power law distribution, 92
power law distribution of probabilities, 77
prefix codes, 5, 12–67
prefix property, 5, 11, 12
punctured Elias codes, 5, 82

quantized source, 154
quindecimal (base-15), 40

random data, 46
random variable (definition of), 6
recursive phased-in codes, 5, 37–39
redundancy, 14, 77

and robust codes, 144
definition of, 15–16

redundancy feedback (rf) coding, 33–37
representation (definition of), ix
resynchronizing Huffman code, 156–159
reversible codes, see bidirectional codes
RF coding, see redundancy feedback coding
RHC, see resynchronizing Huffman code
Rice codes, 6, 136–138, 177

as bidirectional codes, 162–164
as start-step-stop codes, 72
subexponential code, 138

Rice, Robert F. (Rice codes developer), 132,
136

Riemann zeta function, 92
RLE, see run-length encoding
Robinson, Tony (Shorten developer), 137
robust codes, 143–175
Rodeh, Michael (1949–), 81
Rota, Gian Carlo (1932–1999), 128
roulette game (and geometric distribution),

129
run-length encoding (RLE), 4, 47, 130
RVLC, see bidirectional codes, reversible

codes

Schalkwijk’s variable-to-block code, 23–28
secure codes (cryptography), 143
self-delimiting codes, 5, 40–42
Sellman, Jane, 77
semaphore code, 113
Shakespeare, William (1564–1616), 160
Shannon, Claude Elwood (1916–2001), 13,

14, 16, 42, 144
Shannon–Fano method, 42
Shorten (audio compression), 137
Sierpinski triangle (and the Pascal triangle),

25
sieve of Eratosthenes, 126
simple-9 code, 41–42
source (of data), 6, 13

gapless, 154
quantized, 154

source coding, 14, 143
SP-code (synchronizable pattern code), 117
start-step-stop codes, 5, 39, 71–72, 177, 178

and exponential Golomb codes, 164
start/stop codes, 5, 73–74, 177
Stirling formula, 26
stone-age binary (unary code), 70
Stout codes, 5, 89–91, 177

and search trees, 99
Stout, Quentin Fielden, 89
stream (compressed), 7
subexponential code, 136, 138, 177
suffix codes, 162

ambiguous term, 5
phased-in codes, 32

symmetric codes, 168–170
synchronous codes, 6, 119, 150–159

Index 191

taboo codes, 5, 100–104, 177
as bidirectional codes, 161
block-based, 100–102
unconstrained, 102–104

Tarantino, Quentin Jerome (1963–), 104
ternary comma code, 5, 86–87
text (random), 46
Thomas, Lewis (1913–1993), 150
Thompson, Kenneth (1943–), 21
Tjalkens–Willems variable-to-block code,

28–30
tree

Huffman, 42, 45, 51
height of, 57–59

parse, 23
traversal, 43

trit (ternary digit), 13, 56, 86, 111
Trudeau, Joseph Philippe Pierre Yves

Elliott (1919–2000), 102
Truţa, Cosmin, x
Tunstall code, 5, 21–23, 161

combined with Huffman, 49–51

UD, see uniquely decodable codes
Ulam, Stanislaw Marcin (1909–1984), 128
unary code, 5, 40, 70, 138

a special case of Golomb code, 131
general, 71–74
ideal symbol probabilities, 85

unary prefix/suffix codes (UP/S), 177
Unicode, 10
uniquely decodable (UD) codes, ix, 5, 18
uniquely decodable codes

not prefix codes, 18, 114, 118
universal codes, 18
UP/S code, see unary prefix/suffix codes

Vail, Alfred (1807–1859), viii, 11
variable-length codes, 10, 51

unambiguous, 19
variable-length error-correcting (VLEC)

codes, 170–174
variable-to-block codes, 3–5, 21–30
variable-to-fixed codes, 21
variable-to-variable codes, 4
variance of Huffman codes, 45
Vigna, Sebastiano, 92
Vitter, Jeffrey Scott (1955–), 177
VLC, see variable-length codes
VLEC, see variable-length error-correcting

codes

Wang’s flag code, 5, 105–106
Wang, Muzhong, 105
webgraph (compression of), 91–92
Wheeler, John Archibald (1911–), 15
Wheeler, Wayne, (Colophon)
Whittle, Robin, 137
word-aligned packing, 40–42
Wordsworth, William (1770–1850), 160
WWW (World Wide Web), 91–92

Xenophanes of Colophon, (Colophon)
XOR, see exclusive OR

Yamamoto’s flag code, 6, 106–110
Yamamoto’s recursive code, 5, 94–97
Yamamoto, Hirosuke, 94, 96, 106
Yao, Andrew Chi Chih (1946–), 98
Yeung, Raymond W., 139

Zeckendorf’s theorem, 111, 120
Zeilberger, Doron (1950–), 126
Zelazny, Roger Joseph (1937–1995), 183
zeta (ζ) codes, 5, 92–94
zeta function (Riemann), 92
Zipf, George Kingsley (1902–1950), 92
Ziv, Jacob (1931–), 3

An index is a tool that simplifies the
measurement of movements in a numerical series.

http://www.bls.gov/cpi/cpifaq.htm

Colophon
The idea for this little book came to me gradually during the summer of 2006, while I was
working on the 4th edition of the much bigger book Data Compression: The Complete
Reference. Searching the Internet for new compression methods and techniques, I came
across several references to a document by Steven Pigeon on variable-length codes, but
the document itself seemed to have evaporated. I became intrigued by the absence of this
document, and I gradually realized that my book, big as it was, did not say much about
these important codes. Once the big book was completed and was sent to the publisher,
I decided to look deeper into variable-length codes. My original intention was to write
perhaps 30–40 pages and leave the material, in PDF format, in the web site of the big
book, as auxiliary material. However, once I started to actually collect information on
the many variable-length codes and their applications, the document grew quickly and
eventually caught the eye of Wayne Wheeler, the computer science editor of Springer
Verlag, who decided to publish it as a book.

The material for this book was written as separate sections, from September 2006
to January 2007. It took a few more weeks to reorder the sections, read and reread
the text, make improvements and corrections, and add the Preface, Introduction, and
Index. The final manuscript was sent to the publisher in late February 2007.

The book is small and it consists of about 92,000 words. There are 170 cross-
references (for figures, tables, equations, sections, and chapters) and the raw index file
contains about 560 index items. Like all my previous books, this one was also typeset in
plain TEX, with special formatting macros, using the Textures implementation on the
Macintosh.

Truly the gods have not from the beginning revealed all things to
mortals, but by long seeking, mortals make progress in discovery.

—Xenophanes of Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

